Exercises for the PhD course Graph Theory

Lecture 1

1. Prove or disprove: If a (simple) graph with diameter 2 has a cut-vertex, then its complement has an isolated vertex.
2. (a) Show that if G is a connected graph where all vertex degrees are even, then for any $v \in V(G)$ $c(G-v) \leq \frac{1}{2} d_{G}(v)$.
(b) Let G be a connected graph with $|V(G)| \geq 3$. Show that if G has a cut-edge, then G has a vertex v such that $c(G-v)>c(G)$, while the converse is not necessarily true.
3. Prove that every connected graph G contains a path of length at least $\min \{2 \delta(G),|V(G)|-1\}$.
