Exercises for the PhD course Graph Theory

Lecture 10

- 1. Show that $t_{r-1}(n)/\binom{n}{2}$ converges to (r-2)/(r-1) as $n \to \infty$. (Hint: $t_{r-1}((r-1)\lfloor \frac{n}{r-1} \rfloor) \leq t_{r-1}(n) \leq t_{r-1}((r-1)\lceil \frac{n}{r-1} \rceil)$.)
- 2. (a) Show that Hadwiger's conjecture for r + 1 implies the conjecture for r.
 (b) Prove the following weakening of Hadwiger's conjecture: given any ε > 0, every graph of chromatic number at least r^{1+ε} has a K_r minor, provided that r is large enough.
- 3. (a) Prove that if G has minimum degree at least 3, then G contains a (topological) K_4 minor.

(b) A multigraph is called *series-parallell* if it can be constructed recursively from a K_2 by the operations of subdividing and doubling edges. Show that a 2-connected multigraph is series-parallell if and only if it has no (topological) K_4 minor.