Exercises for the PhD course Graph Theory

Lecture 12

1. (a) Let $\epsilon>0$ and $p=p(n)>0$, and let $r \geq(1+\epsilon)(2 \log n) / p$ be an integer-valued function of n. Show that almost no graph in $\mathcal{G}(n, p)$ contains r independent vertices. (Here, \log is the natural logarithm.)
(b) Show that for every $0<\epsilon<1$ and $p=(1-\epsilon) \frac{\log n}{n}$ almost every graph in $\mathcal{G}(n, p)$ has an isolated vertex. Hint: Use the second moment method (Lemma 11.4.2).
2. Show that for constant $p \in(0,1)$ almost every graph in $\mathcal{G}(n, p)$ has diameter 2 .
3. Show that for every graph H there is a function $p=p(n)$ such that $p \rightarrow 0$ as $n \rightarrow \infty$, but almost every graph in $\mathcal{G}(n, p)$ contains an induced copy of H.
