Some notation for the PhD course Graph Theory

$E(G)$ set of edges in G.
$V(G)$ set of vertices in G.
K_{n} complete graph on n vertices.
$K_{m, n}$ complete bipartite graph on $m+n$ vertices.
$G^{\text {c }}$ the complement of G. (Diestel uses notation \bar{G}).
$L(G)$ line graph of G.
$c(G)$ number of components of G.
$o(G)$ number of odd components in G (i.e. number of components with an odd number of vertices.)
$d_{G}(v)$ degree of a vertex v in G.
$N_{G}(v)$ set of neighbors in G of a vertex v.
$\delta(G)$ minimum degree in G.
$\Delta(G)$ maximum degree in G.
$\alpha(G)$ independence number of G, i.e., the size of the largest independent set in G.
$\beta(G)$ minimum size of a vertex cover in G.
$\alpha^{\prime}(G)$ size of a maximum matching in G.
$\beta^{\prime}(G)$ minimum size of an edge cover in G.
$d_{G}(u, v)$ distance between u and v, i.e., length of a shortest path between u and v
$\kappa(G)$ connectivity of G, i.e. the greatest k such that G is k-connected.
$\kappa^{\prime}(G)$ edge-connectivity of G, i.e. the greatest k such that G is k-edge-connected. (Note: $\lambda(G)$ in Diestel)
$\chi(G)$ chromatic number of G, i.e. minimum k such that G has a proper k-coloring.
$\chi^{\prime}(G)$ chromatic index (edge-chromatic number) of G, i.e. minimum k such that G has proper k-edge coloring.
$\omega(G)$ clique number of G, i.e. the size of a maximum clique in G.
$\chi_{l}(G)$ list-chromatic number (or choice number of G), i.e. the smallest number k such that if L is a list assignment for the vertices of G such that $|L(v)| \geq k$ for every $v \in V(G)$, then G has an L-coloring.
$\chi_{l}^{\prime}(G)$ list-chromatic index (or list edge chromatic number of G), i.e. the smallest number k such that if L is a list assignment for the edges of G such that $|L(e)| \geq k$ for every $e \in E(G)$, then G has an L-edge-coloring.
ex (n, H) the largest number of edges in a graph G on n vertices that does not contain H as a subgraph.
$\mathcal{G}(n, m)$ "the random graph", i.e. the probability space consisting of all graphs with n vertices and m edges, and where all such graphs are equally likely.
$\mathcal{G}(n, p)$ "the binomial random graph", i.e. the probability space of graphs on n vertices where each edge independently occurs in G with probability p.

