Computer Exercise 3. Sylvester's Law of Inertia

1 General information

The assignment consists of a mixture of theoretical exercises and practical programming. At the end of the exercise a written report with well structured solutions to the theoretical questions and also Matlab programs, and graphs or plots that summarize the computational results should be sent by email to Fredrik. Berntsson@liu.se. In order to reduce the number of Matlab programs keep old code as comments when you modify a program in an exercise.

2 Background and Theory

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ can be reduced to tridiagonal form using an orthogonal matrix,

$$
T=Q A Q^{T}
$$

where Q can be written as a product of Householder reflections. Thus instead of studying the eigenvalues of a general symmetric matrix it is sufficient to consider only tridiagonal symmetric matrices.

In this execise we will formulate a method for finding bounds for the eigenvalues of a symmetric matrix, or even computing a few of the eigenvalues, by taking advantage of the fact that it is inexpensive to compute the $L U$, or $L D L^{T}$, decomposition of tridiagonal matrices.

The method is based on Sylvesters Law of Inertia that allows us to compute eigenvalues by a bisection procedure called spectrum slicing. The algorithm is based on the following:

Definition The Inertia of a symmetric matrix A is a triplet (m, z, p) where m, z, and p, are the number of positive, zero, and negative eigenvalues respectively.

Theorem If $A \in \mathbb{R}^{n \times n}$ is symmetric and $X \in \mathbb{R}^{n \times n}$ is non-singular then A and $X^{T} A X$ has the same inertia.

3 Spectrum Slicing

Let,

$$
A=\left(\begin{array}{rrrrrr}
2 & -1 & & & & \\
-1 & 3 & -1 & & & \\
& -1 & 4 & -1 & & \\
& & -1 & 5 & -1 & \\
& & & -1 & 6 & -1 \\
& & & & -1 & 7
\end{array}\right)
$$

Exercise 3.1 Consider the matrix A above. Compute the decomposition $A=L D L^{T}$ by using the Matlab routine ldl. Does the result imply that A only has positive eigenvalues?

Remark In Matlab [L, D] =ldl(A) calculates an $L D L^{T}$ decomposition but D may be block diagonal with a few 2×2 blocks on the diagonal. This is not a problem since the eigenvalues of 2×2 matrices are known explicitly.

By using Sylvesters Law of Inertia together with a shift we can count the number of eigenvalues of A that are bigger than a number σ. We do this by computing the decomposition

$$
A-\sigma I=L D L^{T}
$$

where pivoting is avoided completely. Since pivoting is not used the decomposition can fail to exist. This is not a problem however since we can simply shift σ a little and try again. It can be shown that for this particular case large elements in the L matrix does not cause any inaccuracy in the results.

Exercise 3.2 If pivoting is used then the routine ldl computes a decomposition $P^{T} A P=L D L^{T}$. Can you still conclude that the matrices A and D has the same inertia?

Exercise 3.3 Use a shifts $\sigma=1$ and $\sigma=8$ to prove that all the eigenvalues of A are located in the interval $1<\lambda<8$. Additionally use the shift $\sigma=2$ to prove that exactly one eigenvalue belongs to the interval $1<\lambda<2$.

Remark It is possible to implement this type of procedure very efficiently to compute all eigenvalues of a tridiagonal matrix. For matrices with special structure you can sometimes use congurence transformations $B=X A X^{T}$ to obtain simpler matrices for the purpose of proving positive or negative definite, or even to prove that no eigenvalue exists within certain intervals.

