Computer Exercise 3. Sylvester's Law of Inertia

1 General information

The assignment consists of a mixture of theoretical exercises and practical programming. At the end of the exercise a written report with well structured solutions to the theoretical questions and also Matlab programs, and graphs or plots that summarize the computational results should be sent by email to Fredrik.Berntsson@liu.se. In order to reduce the number of Matlab programs keep old code as comments when you modify a program in an exercise.

2 Background and Theory

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ can be reduced to tridiagonal form using an orthogonal matrix,

$$T = QAQ^T,$$

where Q can be written as a product of Householder reflections. Thus instead of studying the eigenvalues of a general symmetric matrix it is sufficient to consider only tridiagonal symmetric matrices.

In this execise we will formulate a method for finding bounds for the eigenvalues of a symmetric matrix, or even computing a few of the eigenvalues, by taking advantage of the fact that it is inexpensive to compute the LU, or LDL^T , decomposition of tridiagonal matrices.

The method is based on *Sylvesters Law of Inertia* that allows us to compute eigenvalues by a bisection procedure called *spectrum slicing*. The algorithm is based on the following:

Definition The *Inertia* of a symmetric matrix A is a triplet (m, z, p) where m, z, and p, are the number of positive, zero, and negative eigenvalues respectively. \Box

Theorem If $A \in \mathbb{R}^{n \times n}$ is symmetric and $X \in \mathbb{R}^{n \times n}$ is non-singular then A and $X^T A X$ has the same inertia. \Box

3 Spectrum Slicing

Let,

$$A = \begin{pmatrix} 2 & -1 & & & \\ -1 & 3 & -1 & & & \\ & -1 & 4 & -1 & & \\ & & -1 & 5 & -1 & \\ & & & -1 & 5 & -1 \\ & & & & -1 & 7 \end{pmatrix}.$$

Exercise 3.1 Consider the matrix A above. Compute the decomposition $A = LDL^T$ by using the Matlab routine 1d1. Does the result imply that A only has positive eigenvalues?

Remark In Matlab [L,D]=ldl(A) calculates an LDL^T decomposition but D may be block diagonal with a few 2×2 blocks on the diagonal. This is not a problem since the eigenvalues of 2×2 matrices are known explicitly.

By using Sylvesters Law of Inertia together with a shift we can count the number of eigenvalues of A that are bigger than a number σ . We do this by computing the decomposition

$$A - \sigma I = LDL^T$$

where pivoting is avoided completely. Since pivoting is not used the decomposition can fail to exist. This is not a problem however since we can simply shift σ a little and try again. It can be shown that for this particular case large elements in the L matrix does not cause any inaccuracy in the results.

Exercise 3.2 If pivoting is used then the routine ldl computes a decomposition $P^T A P = L D L^T$. Can you still conclude that the matrices A and D has the same inertia? \Box

Exercise 3.3 Use a shifts $\sigma = 1$ and $\sigma = 8$ to prove that all the eigenvalues of A are located in the interval $1 < \lambda < 8$. Additionally use the shift $\sigma = 2$ to prove that exactly one eigenvalue belongs to the interval $1 < \lambda < 2$. \Box

Remark It is possible to implement this type of procedure very efficiently to compute all eigenvalues of a tridiagonal matrix. For matrices with special structure you can sometimes use congurence transformations $B = XAX^T$ to obtain simpler matrices for the purpose of proving positive or negative definite, or even to prove that no eigenvalue exists within certain intervals.