Computer Exercise 4.5. The Conjugate Gradient Method

1 General information

The assignment consists of a mixture of theoretical exercises and practical programming. At the end of the exercise a written report with well structured solutions to the theoretical questions and also Matlab programs, and graphs or plots that summarize the computational results should be sent by email to Fredrik. Berntsson@liu.se. In order to reduce the number of Matlab programs keep old code as comments when you modify a program in an exercise.

2 The Conjugate Gradient Method

The Conjugate gradient method is as follows:

$$
\begin{aligned}
& r^{(0)}=b-A x^{(0)}, p_{0}:=r^{(0)} \\
& \text { for } j=1,2, \ldots \text { do } \\
& \qquad \begin{array}{l}
\alpha_{j}=\left(r^{(j)}, r^{(j)}\right) /\left(A p_{j}, p_{j}\right) \\
\\
\quad x^{(j+1)}:=x^{(j)}+\alpha_{j} p_{j} \\
\\
\quad r^{(j+1)}:=r^{(j)}-\alpha_{j} A p_{j} \\
\quad \beta_{j}:=\left(r^{(j+1)}, r^{(j+1)}\right) /\left(r^{(j)}, r^{(j)}\right) \\
\quad p_{j+1}:=r_{j+1}+\beta_{j} p_{j}
\end{array} \\
& \text { end }
\end{aligned}
$$

Provided that the matrix A is symmetric and positive definite then the above algorithm converges to the solution of the linear system $A x=b$.

Exercise 2.1 Write a Matlab function that implements the above formulas. The function should be used as follows:

```
>> [ x , Residuals ]=ConjugateGradient( A , b , x0 , MaxIter , tol );
```

where Residuals is a vector of the residuals during the iterations. The stopping criteria should be based on the relative residual $\|r\|_{2} \leq$ tol $\|b\|_{2}$.

Exercise 2.2 Load the bundle1 test problem in Matlab and calculate the dimension and number of non-zeros for the matrix A.

Calculate the $L U$ decomposition of A. How many non-zeros are there in the L and U matrices?

The above shows that an iterative solver can potentially be alot more efficient than a direct one.
Exercise 2.3 Use your function to solve the linear system $A x=b$; using $x_{0}=0$. Terminate the iterations when the relative residual is smaller than tol $=10^{-10}$. How many iterations are needed?

Hint The starting residual is quite large hence the relatively large number of iterations. Plot the residuals using semilogy to clearly see the convergence speed.

