
TANA15 Numerical Linear Algebra

Course Contents

Standard Matrix Decompositions: LU, QR, SVD, FFT,

Eigenvalue,. . .

Basic Linear Algebra Operations: Projection, Rotation,. . .

Computing and using the Standard Decompositions.

Non-Linear Equations and Least Squares. The Newton and

Gauss–Newton methods.

Applications: Model fitting, Roots of Polynomials, Text models

and Search Engines, Image processing,...

Examination

Written Exam (4 hp)

Computer Exercises (2 hp)

Lecturer

Fredrik Berntsson (fredrik.berntsson@liu.se).
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Numerical Linear Algebra Objectives

Theory

- Define a good set of standard linear algebra operations and matrix

decompositions.

- Show how application problems can be solved by using standard

operations.

- Investigate stability properties, error estimates, etc.

Software

- Write efficient and reliable subroutines for computing

decompositions.

- Modify existing software to take advantage of modern computer

hardware.
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TANA15/Lecture 1 - Contents

Basic Matrix Operations

Matrix–Matrix multiplication. Operation counts

Basic Linear Algebra Subroutines (BLAS,ATLAS)

Linear Spaces and Mappings

Range and Null spaces. Rank. The Inverse.

Scalar Products, Vector and Matrix Norms. The Transpose.
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Example: Matrix–Matrix multiply

Compute C = AB by

cij =
n

∑

k=1

aikbkj.

In Matlab
C=zeros(n,n);

for i=1:n

for j=1:n

for k=1:n

C(i,j)=C(i,j)+A(i,k)*B(k,j);

end

end

end

Requires n3 multiply/additions. Is this the best way?
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Memory Organization

Data storage and access

CPU can only access

Registers and Cache.

Data is stored in blocks.

A block can be moved

between main and cache

memory.

Memory Performance

CPU and Registers are

fast. Low storage

capacity.

Main memory is slow

but has high storage

capacity.

RegistersCPU

Cache Memory

Main Memory

Secondary
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The structure of matrix-matrix multiply

C

=

A B

Assumptions Matrices stored by column. One column/memory

block. Three columns fit in the Cache memory.

Then the column B(:,j) is stored as one memory block and the

elements in the row A(i,:) are stored in different blocks.

Conclusion Computing A(i,:)TB(:,j) require one main memory

access/multiply!
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C

=

A B

Alternative Store A by rows. Both A(i,:) and B(:,j) fit in

Cache. Computing A(i,:)TB(:,j) requires two Main memory

access calls!

Conclusion Computing C = AB requires n3 multiply/additions and

2n2 main memory access calls.

Doesn’t store A and B the same way!

August 10, 2017 Sida 7 / 26







C11 . . . C1p

...
...

Cp1 Cpp






=







A11 . . . A1p

...
...

Ap1 App













B11 . . . B1p

...
...

Bp1 Bpp







Alternative Block storage. Blocks are of size
√

n ×√
n. Three blocks

fit into cache.

Keep Cij in Cache. Updating Cij = Cij + AikBkj needs two main

memory calls and (
√

n)3 multiply/additions.

Conclusion Still need n3 multiply/additions. But only

2(
√

n)3 = 2n1.5 main memory access calls.
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Matrix-Matrix multiply

Compute C = AB by

cij =

n
∑

k=1

aikbkj.

Remark This is not a definition. It is one possible algorithm for

computing the matrix C representing the composite mapping A ◦ B.

Question The algorithm requires n3 multiplications and n2(n − 1)
additions. Is it possible to do better?
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Strassen’s Matrix-Matrix multiply

Regular matrix-matrix multiply is

(

c11 c12

c21 c22

)

=

(

a11 a12

a21 a22

)(

b11 b12

b21 b22

)

=

(

a11b11+a12b21 a11b12+a12b22

a21b11+a22b21 a21b12+a22b22

)

.

This requires 8 multiplications (and 4 additions). An equivalent
formula is

(

c11 c12

c21 c22

)

=

(

p1+p4−p5+p7 p3+p5

p2+p4 p1+p3−p2+p6

)

,

where

p1 = (a11 + a22)(b11 + b22), p2 = (a21 + a22)b11, p3 = a11(b12 − b22),
p4 = a22(b21 − b11), p5 = (a11 + a12)b22, p6 = (a21 − a11)(b11 + b12),
och p7 = (a12 − a22)(b21 + b22).

Only 7 multiplications (and 18 additions). Volker Strassen, 1969.
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Lemma Computing the product C = AB requires at least

O(n2) arithmetic operations. �

This is the only result that exists!

Strassens method requires O(n2.807) operations. The currently best

algorithm requires O(n2.3727). By Virginia Vassilevska Williams.

Remark Very large matrices are often sparse, i.e. most elements aij

are zero, and other algorithms are much more efficient.
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Operation counts

Lemma A matrix-matrix multiply C = AB requires

O(n3) operations.

Lemma A matrix-vector multiply y = Ax requires O(n2)
operations.

Example Suppose A,B ∈ R
n×n. How much computational work is

needed to evaluate the product

y = ABx.
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Lemma Computing an outer product A = uvT requires

O(n2) operations.

Example How should we compute the matrix-vector product

y = Ax, where A = uvT , u, v ∈ R
n,

and how many arithmetic operations and memory slots are needed?

Remark Estimating the amount of work is important. The difference

between O(n2) and O(n4) is huge for large n.
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Basic Linear Algebra Subroutines (BLAS)

Standard set of basic linear algebra operations

Level 1: Scalar–Vector.

Level 2: Matrix–Vector.

Level 3: Matrix–Matrix.

Software (C/C++, Fortran, Matlab)

Efficient implementations available for most computers.

Takes advantage of complex memory systems.

Reference implementation available on www.netlib.org.

Level 3 operations gains the most from code optimization!

Example A SAXPY call computes z = αx + y where α is a scalar and

x, y are vectors. The S means single precison or 32 bit floating point

numbers. A DGEMM call computes C := αAB + βC, in 64 bit

arithmetic.
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Automatically Tuned Linear Algebra Subroutines

(ATLAS)

• Implements most of the routines from BLAS and much more.

• Available from

http://math-atlas.sourceforge.net/

or package managers in Linux. Try

>> yum info atlas

>> man dgemm

in the computer laboratory.

• Download the source and compile. Automatically detects cache

size, memory read/write speed, etc, and produce close to the best

available code.
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Basic concepts

A matrix A ∈ R
m×n represents a linear mapping from R

n

to R
m.

The range of the matrix A is the linear subspace

Range(A) = {y ∈ R
m such that y = Ax for some x ∈ R

n}.

Remark Similarly the domain is the set x ∈ R
n such that y = Ax is

defined. This is not as often used since typically Domain(A) = R
n.
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Definition The rank of a matrix is

Rank(A) = dim(Range(A))

Remark If A ∈ R
n×m then Rank(A) ≤ min(n,m).

Lemma Let A ∈ R
n×n. If Rank(A) = n then there exists

an inverse A−1 such that x = A−1y for every x, y such that

y = Ax.

Example Prove that (AB)−1 = B−1A−1.
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Example Consider a linear system Ax = b. Existence of a solution?

Definition Let A ∈ R
n×m. The null space is

Null(A) = {x ∈ R
n such that Ax = 0}.

Definition The identity mapping I is defined by Ix = x for

every x ∈ R
n.

Remark If the inverse of A exists then A−1A = I.
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Norms and Scalar products

Definition Let x ∈ R
n. The norm ‖x‖ is a measure of the

size of x.

Example The most commonly used norms are

‖x‖2 = (

n
∑

i=1

x2
i )

1
2 and ‖x‖∞ = max

1≤i≤n
|xi|.

They satisfy the relation

‖x‖∞ ≤ ‖x‖2 ≤
√

n‖x‖∞.

Remark There are many different norms that are used.
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Definition The Scalar product (x, y) measures the angle

between x and y. If (x, y) = 0 then x and y are orthogonal.

Example The space R
n is a Hilbert space with the scalar product

(x, y) = xTy. We have ‖x‖2
2 = (x, x).

Lemma The Cauchy-Schwarz inequality (x, y) ≤ ‖x‖‖y‖
holds.
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Definition Let ‖ · ‖ be a vector norm. A matrix norm is

‖A‖ = max
x6=0

‖Ax‖
‖x‖ .

Remark The matrix norm is induced from a vector norm.

Lemma Suppose A is a matrix. Then

‖A‖∞ = max
1≤i≤n

n
∑

j=1

|Aij|.
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Lemma Suppose A and B are matrices and ‖ · ‖ is a

matrix norm induced from a vector norm. Then the

submultiplicative property ‖AB‖ ≤ ‖A‖‖B‖ holds.

Example Prove that ‖A‖‖A−1‖ ≥ 1 for any matrix norm induced by a

vector norm.
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Definition The Frobenius norm of a matrix A is

‖A‖F =





n
∑

i=1

m
∑

j=1

|aij|2




1/2

.

Remark The norm ‖ · ‖F is not induced by a vector norm.

August 10, 2017 Sida 23 / 26

Matlab

In order to compute the rank or the nullspace of a matrix we use

>> k = rank( A );

>> V = null( A );

The columns of V are an orthogonal basis for Null(A).

In order to compute norms there is a function

>> norm( x , 2 )

>> norm( A , ’fro’ )

that computes most different norms. The inverse is computed using

>> inv(A)
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The Transpose

Definition The transpose of a matrix A ∈ R
n×m is a

matrix AT ∈ R
m×n defined by (AT)ij = (A)ji.

Lemma (AB)T = BTAT

Proof Look at a component of the matrix (AB)T

((AB)T)ij = (AB)ji =

p
∑

k=1

ajkbki =

p
∑

k=1

(AT)kj(B
T)ik =

p
∑

k=1

(BT)ik(A
T)kj = (BTAT)ij.
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Definition The transpose of A is the matrix AT that

satisfies (Ax, y) = (x,AT y) for every pair of vectors x, y.

Lemma If A maps Rn into R
m then (A)ij = (AT)ji.

Proof Use the standard basis {ei} and the scalar product (x, y) = xT y.

Corollary (AB)T = BTAT .

Remark Compare with the adjoint from functional analysis. The

proof gives more insight!
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