Numerical Linear Algebra Objectives

Course Contents

- Standard Matrix Decompositions: LU, QR, SVD, FFT, Eigenvalue,..
Basic Linear Algebra Operations: Projection, Rotation,..
- Computing and using the Standard Decompositions.
- Non-Linear Equations and Least Squares. The Newton and Gauss-Newton methods.
- Applications: Model fitting, Roots of Polynomials, Text models and Search Engines, Image processing,...

Examination

- Written Exam (4 hp)
- Computer Exercises (2 hp)

Lecturer

- Fredrik Berntsson(fredrik.berntsson@liu.se)

Theory

- Define a good set of standard linear algebra operations and matrix decompositions.
- Show how application problems can be solved by using standard operations.
- Investigate stability properties, error estimates, etc.

Software

- Write efficient and reliable subroutines for computing decompositions.
- Modify existing software to take advantage of modern computer hardware.

TANA15/Lecture 1 - Contents

Basic Matrix Operations

- Matrix-Matrix multiplication. Operation counts
- Basic Linear Algebra Subroutines (BLAS,ATLAS)

Linear Spaces and Mappings

- Range and Null spaces. Rank. The Inverse.
- Scalar Products, Vector and Matrix Norms. The Transpose.

Example: Matrix-Matrix multiply

```
Compute \(C=A B\) by
\[
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
\]
In Matlab
```

```
C=zeros(n,n);
```

C=zeros(n,n);
for i=1:n
for i=1:n
for j=1:n
for j=1:n
for k=1:n
for k=1:n
C(i,j)=C(i,j)+A(i,k)*B(k,j);
C(i,j)=C(i,j)+A(i,k)*B(k,j);
end
end
end
end
end

```
    end
```

Requires n^{3} multiply/additions. Is this the best way?

Data storage and access

- CPU can only access Registers and Cache.
- Data is stored in blocks.
- A block can be moved between main and cache memory.
Memory Performance
- CPU and Registers are fast. Low storage capacity.
- Main memory is slow but has high storage capacity.

$$
\left(\begin{array}{ccc}
C_{11} & \ldots & C_{1 p} \\
\vdots & & \vdots \\
C_{p 1} & & C_{p p}
\end{array}\right)=\left(\begin{array}{ccc}
A_{11} & \ldots & A_{1 p} \\
\vdots & & \vdots \\
A_{p 1} & & A_{p p}
\end{array}\right)\left(\begin{array}{ccc}
B_{11} & \ldots & B_{1 p} \\
\vdots & & \vdots \\
B_{p 1} & & B_{p p}
\end{array}\right)
$$

Alternative Block storage. Blocks are of size $\sqrt{n} \times \sqrt{n}$. Three blocks fit into cache.

Keep $C_{i j}$ in Cache. Updating $C_{i j}=C_{i j}+A_{i k} B_{k j}$ needs two main memory calls and $(\sqrt{n})^{3}$ multiply/additions.

Conclusion Still need n^{3} multiply/additions. But only $2(\sqrt{n})^{3}=2 n^{1.5}$ main memory access calls.

Matrix-Matrix multiply

Strassen's Matrix-Matrix multiply

Regular matrix-matrix multiply is
$\left(\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right)=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)=\left(\begin{array}{ll}a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\ a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}\end{array}\right)$.
This requires 8 multiplications (and 4 additions). An equivalent formula is

$$
\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)=\left(\begin{array}{cc}
p_{1}+p_{4}-p_{5}+p_{7} & p_{3}+p_{5} \\
p_{2}+p_{4} & p_{1}+p_{3}-p_{2}+p_{6}
\end{array}\right)
$$

where

$$
p_{1}=\left(a_{11}+a_{22}\right)\left(b_{11}+b_{22}\right), \quad p_{2}=\left(a_{21}+a_{22}\right) b_{11}, \quad p_{3}=a_{11}\left(b_{12}-b_{22}\right),
$$

$$
p_{4}=a_{22}\left(b_{21}-b_{11}\right), \quad p_{5}=\left(a_{11}+a_{12}\right) b_{22}, \quad p_{6}=\left(a_{21}-a_{11}\right)\left(b_{11}+b_{12}\right),
$$

$$
\text { och } p_{7}=\left(a_{12}-a_{22}\right)\left(b_{21}+b_{22}\right)
$$

Only 7 multiplications (and 18 additions). Volker Strassen, 1969.

Operation counts

Lemma A matrix-matrix multiply $C=A B$ requires

This is the only result that exists!

Strassens method requires $\mathcal{O}\left(n^{2.807}\right)$ operations. The currently best algorithm requires $\mathcal{O}\left(n^{2.3727}\right)$. By Virginia Vassilevska Williams.

Remark Very large matrices are often sparse, i.e. most elements $a_{i j}$ are zero, and other algorithms are much more efficient.
$\mathcal{O}\left(n^{3}\right)$ operations.

Lemma A matrix-vector multiply $y=A x$ requires $\mathcal{O}\left(n^{2}\right)$ operations.

Example Suppose $A, B \in \mathbb{R}^{n \times n}$. How much computational work is needed to evaluate the product

$$
y=A B x .
$$

Basic Linear Algebra Subroutines (BLAS)

Lemma Computing an outer product $A=u v^{T}$ requires $\mathcal{O}\left(n^{2}\right)$ operations.

Example How should we compute the matrix-vector product

$$
y=A x, \quad \text { where } A=u v^{T}, \quad u, v \in \mathbb{R}^{n},
$$

and how many arithmetic operations and memory slots are needed?
Remark Estimating the amount of work is important. The difference between $\mathcal{O}\left(n^{2}\right)$ and $\mathcal{O}\left(n^{4}\right)$ is huge for large n.

Automatically Tuned Linear Algebra Subroutines
 (ATLAS)

- Implements most of the routines from BLAS and much more.
- Available from
http://math-atlas.sourceforge.net/
or package managers in Linux. Try

$$
\begin{aligned}
& \text { >> yum info atlas } \\
& \text { >> man dgemm }
\end{aligned}
$$

in the computer laboratory.

- Download the source and compile. Automatically detects cache size, memory read/write speed, etc, and produce close to the best available code.

Standard set of basic linear algebra operations

- Level 1: Scalar-Vector.
- Level 2: Matrix-Vector.
- Level 3: Matrix-Matrix.

Software (C/C++, Fortran, Matlab)

- Efficient implementations available for most computers.
- Takes advantage of complex memory systems.
- Reference implementation available on www. netlib. org.
- Level 3 operations gains the most from code optimization!

Example A SAXPY call computes $z=\alpha x+y$ where α is a scalar and x, y are vectors. The S means single precison or 32 bit floating point numbers. A DGEMM call computes $C:=\alpha A B+\beta C$, in 64 bit arithmetic.

Basic concepts

to \mathbb{R}^{m}

The range of the matrix A is the linear subspace

$$
\operatorname{Range}(A)=\left\{y \in \mathbb{R}^{m} \text { such that } y=A x \text { for some } x \in \mathbb{R}^{n}\right\} .
$$

Remark Similarly the domain is the set $x \in \mathbb{R}^{n}$ such that $y=A x$ is defined. This is not as often used since typically $\operatorname{Domain}(A)=\mathbb{R}^{n}$.

Definition The rank of a matrix is

$$
\operatorname{Rank}(A)=\operatorname{dim}(\operatorname{Range}(A))
$$

Remark If $A \in \mathbb{R}^{n \times m}$ then $\operatorname{Rank}(A) \leq \min (n, m)$.

Lemma Let $A \in \mathbb{R}^{n \times n}$. If $\operatorname{Rank}(A)=n$ then there exists an inverse A^{-1} such that $x=A^{-1} y$ for every x, y such that $y=A x$.

Example Prove that $(A B)^{-1}=B^{-1} A^{-1}$.

Example Consider a linear system $A x=b$. Existence of a solution?

Definition Let $A \in \mathbb{R}^{n \times m}$. The null space is

$$
\operatorname{Null}(A)=\left\{x \in \mathbb{R}^{n} \text { such that } A x=0\right\} .
$$

Definition The identity mapping I is defined by $I x=x$ for every $x \in \mathbb{R}^{n}$.

Remark If the inverse of A exists then $A^{-1} A=I$.

Definition The Scalar product (x, y) measures the angle between x and y. If $(x, y)=0$ then x and y are orthogonal.

Example The most commonly used norms are

$$
\|x\|_{2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}} \quad \text { and } \quad\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| .
$$

They satisfy the relation

$$
\|x\|_{\infty} \leq\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty}
$$

Remark There are many different norms that are used.

Norms and Scalar products

Definition Let $x \in \mathbb{R}^{n}$. The norm $\|x\|$ is a measure of the size of x.

Example The space \mathbb{R}^{n} is a Hilbert space with the scalar product $(x, y)=x^{T} y$. We have $\|x\|_{2}^{2}=(x, x)$.

Lemma The Cauchy-Schwarz inequality $(x, y) \leq\|x\|\|y\|$ holds.

Definition Let $\|\cdot\|$ be a vector norm. A matrix norm is

$$
\|A\|=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}
$$

Remark The matrix norm is induced from a vector norm.

Lemma Suppose A is a matrix. Then

$$
\|A\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|A_{i j}\right|
$$

Matlab

In order to compute the rank or the nullspace of a matrix we use

$$
\begin{aligned}
& \gg k=\operatorname{rank}(A) ; \\
& >V=\operatorname{null}(A) ;
\end{aligned}
$$

The columns of V are an orthogonal basis for $\operatorname{Null}(A)$.
In order to compute norms there is a function

$$
\begin{aligned}
& \gg \operatorname{norm}(x, 2) \\
& \gg \operatorname{norm}(A, ' f r o ')
\end{aligned}
$$

that computes most different norms. The inverse is computed using
>> inv(A)

The Transpose

Definition The transpose of a matrix $A \in \mathbb{R}^{n \times m}$ is a matrix $A^{T} \in \mathbb{R}^{m \times n}$ defined by $\left(A^{T}\right)_{i j}=(A)_{j i}$.

Lemma $(A B)^{T}=B^{T} A^{T}$

Proof Look at a component of the matrix $(A B)^{T}$

$$
\begin{aligned}
\left((A B)^{T}\right)_{i j}= & (A B)_{j i}=\sum_{k=1}^{p} a_{j k} b_{k i}=\sum_{k=1}^{p}\left(A^{T}\right)_{k j}\left(B^{T}\right)_{i k}= \\
& \sum_{k=1}^{p}\left(B^{T}\right)_{i k}\left(A^{T}\right)_{k j}=\left(B^{T} A^{T}\right)_{i j} .
\end{aligned}
$$

Definition The transpose of A is the matrix A^{T} that satisfies $(A x, y)=\left(x, A^{T} y\right)$ for every pair of vectors x, y.

Lemma If A maps \mathbb{R}^{n} into \mathbb{R}^{m} then $(A)_{i j}=\left(A^{T}\right)_{j i}$.

Proof Use the standard basis $\left\{e_{i}\right\}$ and the scalar product $(x, y)=x^{T} y$.

$$
\text { Corollary }(A B)^{T}=B^{T} A^{T} .
$$

Remark Compare with the adjoint from functional analysis. The proof gives more insight!

