Numerical Linear Algebra Objectives

Course Contents

- Standard Matrix Decompositions: LU, QR, SVD, FFT, Eigenvalue,...
- Basic Linear Algebra Operations: Projection, Rotation,...
- Computing and using the Standard Decompositions.
- Non-Linear Equations and Least Squares. The Newton and Gauss–Newton methods.
- Applications: Model fitting, Roots of Polynomials, Text models and Search Engines, Image processing,...

Examination

- Written Exam (4 hp)
- Computer Exercises (2 hp)

Lecturer

• Fredrik Berntsson (fredrik.berntsson@liu.se).

August 10, 2017 Sida 1/26

TANA15/Lecture 1 - Contents

Basic Matrix Operations

Linear Spaces and Mappings

• Matrix-Matrix multiplication. Operation counts

• Range and Null spaces. Rank. The Inverse.

• Basic Linear Algebra Subroutines (BLAS, ATLAS)

• Scalar Products, Vector and Matrix Norms. The Transpose.

Theory

- Define a **good** set of standard linear algebra operations and matrix decompositions.
- Show how application problems can be solved by using standard operations.
- Investigate stability properties, error estimates, etc.

Software

- Write efficient and reliable subroutines for computing decompositions.
- Modify existing software to take advantage of modern computer hardware.

August 10, 2017 Sida 2/26

Example: Matrix–Matrix multiply

Compute C = AB by

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

end

Requires n^3 multiply/additions. Is this the best way?

Memory Organization

Data storage and access

• CPU can **only** access

Registers and Cache.Data is stored in *blocks*.

• A block can be moved between main and cache

memory.

capacity.

capacity.

Memory PerformanceCPU and Registers are

fast. Low storage

• Main memory is slow but has high storage

The structure of matrix-matrix multiply

Assumptions Matrices stored by column. One column/memory block. Three columns fit in the Cache memory.

Then the column B(:, j) is stored as one memory block and the elements in the row A(i, :) are stored in different blocks.

Conclusion Computing $A(i, :)^T B(:, j)$ require one main memory access/multiply!

August 10, 2017 Sida 6/26

CPU

Cache Memory

Main Memory

Secondary

Registers

Alternative Store *A* by rows. Both A(i, :) and B(:, j) fit in Cache. Computing $A(i, :)^T B(:, j)$ requires two Main memory access calls!

=

С

Conclusion Computing C = AB requires n^3 multiply/additions and $2n^2$ main memory access calls.

Doesn't store A and B the same way!

Alternative Block storage. Blocks are of size $\sqrt{n} \times \sqrt{n}$. Three blocks fit into cache.

Keep C_{ij} in Cache. Updating $C_{ij} = C_{ij} + A_{ik}B_{kj}$ needs two main memory calls and $(\sqrt{n})^3$ multiply/additions.

Conclusion Still need n^3 multiply/additions. But only $2(\sqrt{n})^3 = 2n^{1.5}$ main memory access calls.

August 10, 2017 Sida 5/26

Compute C = AB by

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Remark This is not a *definition*. It is one possible algorithm for computing the matrix *C* representing the composite mapping $A \circ B$.

Question The algorithm requires n^3 multiplications and $n^2(n-1)$ additions. Is it possible to do better?

August 10, 2017 Sida 9/26

Strassen's Matrix-Matrix multiply

Regular matrix-matrix multiply is

$$\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

This requires 8 multiplications (and 4 additions). An equivalent formula is

$$\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} p_1 + p_4 - p_5 + p_7 & p_3 + p_5 \\ p_2 + p_4 & p_1 + p_3 - p_2 + p_6 \end{pmatrix},$$

where

 $p_1 = (a_{11} + a_{22})(b_{11} + b_{22}), \quad p_2 = (a_{21} + a_{22})b_{11}, \quad p_3 = a_{11}(b_{12} - b_{22}), \\ p_4 = a_{22}(b_{21} - b_{11}), \quad p_5 = (a_{11} + a_{12})b_{22}, \quad p_6 = (a_{21} - a_{11})(b_{11} + b_{12}), \\ \text{och } p_7 = (a_{12} - a_{22})(b_{21} + b_{22}).$

Only 7 multiplications (and 18 additions). Volker Strassen, 1969.

August 10, 2017 Sida 10/26

Lemma Computing the product C = AB requires *at least* $\mathcal{O}(n^2)$ arithmetic operations.

This is the only result that exists!

Strassens method requires $\mathcal{O}(n^{2.807})$ operations. The currently best algorithm requires $\mathcal{O}(n^{2.3727})$. By Virginia Vassilevska Williams.

Remark Very large matrices are often *sparse*, i.e. most elements a_{ij} are zero, and other algorithms are much more efficient.

Operation counts

Lemma A matrix-matrix multiply C = AB requires $\mathcal{O}(n^3)$ operations.

Lemma A matrix-vector multiply y = Ax requires $O(n^2)$ operations.

Example Suppose $A, B \in \mathbb{R}^{n \times n}$. How much computational work is needed to evaluate the product

y = ABx.

Lemma Computing an *outer product* $A = uv^T$ requires $O(n^2)$ operations.

Example How should we compute the matrix-vector product

y = Ax, where $A = uv^T$, $u, v \in \mathbb{R}^n$,

and how many arithmetic operations and memory slots are needed?

Remark Estimating the amount of work is important. The difference between $O(n^2)$ and $O(n^4)$ is huge for large *n*.

August 10, 2017 Sida 13/26

Automatically Tuned Linear Algebra Subroutines (ATLAS)

- Implements most of the routines from BLAS and much more.
- Available from

```
http://math-atlas.sourceforge.net/
```

or package managers in Linux. Try

```
>> yum info atlas
```

```
>> man dgemm
```

in the computer laboratory.

• Download the source and compile. Automatically detects cache size, memory read/write speed, etc, and produce close to the best available code.

Basic Linear Algebra Subroutines (BLAS)

Standard set of basic linear algebra operations

- Level 1: Scalar–Vector.
- Level 2: Matrix–Vector.
- Level 3: Matrix–Matrix.

Software (C/C++, Fortran, Matlab)

- Efficient implementations available for most computers.
- Takes advantage of complex memory systems.
- Reference implementation available on www.netlib.org.
- Level 3 operations gains the most from code optimization!

Example A SAXPY call computes $z = \alpha x + y$ where α is a scalar and x, y are vectors. The S means single precision or 32 bit floating point numbers. A DGEMM call computes $C := \alpha AB + \beta C$, in 64 bit arithmetic.

August 10, 2017 Sida 14/26

Basic concepts

A matrix $A \in \mathbb{R}^{m \times n}$ represents a *linear mapping* from \mathbb{R}^n to \mathbb{R}^m .

The *range* of the matrix A is the linear subspace

Range(A) = { $y \in \mathbb{R}^m$ such that y = Ax for some $x \in \mathbb{R}^n$ }.

Remark Similarly the *domain* is the set $x \in \mathbb{R}^n$ such that y = Ax is defined. This is not as often used since typically $\text{Domain}(A) = \mathbb{R}^n$.

Definition The *rank* of a matrix is

 $\operatorname{Rank}(A) = \operatorname{dim}(\operatorname{Range}(A))$

Remark If $A \in \mathbb{R}^{n \times m}$ then $\operatorname{Rank}(A) \leq \min(n, m)$.

Lemma Let $A \in \mathbb{R}^{n \times n}$. If Rank(A) = n then there exists an *inverse* A^{-1} such that $x = A^{-1}y$ for every x, y such that y = Ax.

Example Prove that $(AB)^{-1} = B^{-1}A^{-1}$.

August 10, 2017 Sida 17/26

Example Consider a linear system Ax = b. Existence of a solution?

Definition Let $A \in \mathbb{R}^{n \times m}$. The *null space* is

Null(A) = { $x \in \mathbb{R}^n$ such that Ax = 0 }.

Definition The identity mapping *I* is defined by Ix = x for every $x \in \mathbb{R}^n$.

Remark If the inverse of *A* exists then $A^{-1}A = I$.

August 10, 2017 Sida 18/26

Norms and Scalar products

Definition Let $x \in \mathbb{R}^n$. The *norm* ||x|| is a measure of the *size* of *x*.

Example The most commonly used norms are

$$||x||_2 = (\sum_{i=1}^n x_i^2)^{\frac{1}{2}}$$
 and $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$

They satisfy the relation

$$\|x\|_{\infty} \le \|x\|_2 \le \sqrt{n} \|x\|_{\infty}.$$

Remark There are many different norms that are used.

Definition The *Scalar product* (x, y) measures the angle between *x* and *y*. If (x, y) = 0 then *x* and *y* are *orthogonal*.

Example The space \mathbb{R}^n is a Hilbert space with the scalar product $(x, y) = x^T y$. We have $||x||_2^2 = (x, x)$.

Lemma The *Cauchy-Schwarz* inequality $(x, y) \le ||x|| ||y||$ holds.

Definition Let
$$\|\cdot\|$$
 be a vector norm. A matrix norm is

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}.$$

Remark The matrix norm is *induced* from a vector norm.

Lemma Suppose *A* is a matrix. Then

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1} |A_{ij}|.$$

August 10, 2017 Sida 21/26

Lemma Suppose *A* and *B* are matrices and $\|\cdot\|$ is a matrix norm *induced* from a vector norm. Then the *submultiplicative property* $||AB|| \le ||A|| ||B||$ holds.

Example Prove that $||A|| ||A^{-1}|| \ge 1$ for *any* matrix norm induced by a vector norm.

August 10, 2017 Sida 22/26

Definition The *Frobenius* norm of a matrix A is

$$||A||_F = \left(\sum_{i=1}^n \sum_{j=1}^m |a_{ij}|^2\right)^{1/2}.$$

Remark The norm $\|\cdot\|_F$ is *not* induced by a vector norm.

Matlab

In order to compute the *rank* or the *nullspace* of a matrix we use

>> k = rank(A); >> V = null(A);

The columns of *V* are an orthogonal basis for Null(A).

In order to compute norms there is a function

>> norm(x , 2) >> norm(A , 'fro')

that computes most different norms. The inverse is computed using

>> inv(A)

The Transpose

Definition The *transpose* of a matrix $A \in \mathbb{R}^{n \times m}$ is a matrix $A^T \in \mathbb{R}^{m \times n}$ defined by $(A^T)_{ij} = (A)_{ji}$.

Lemma $(AB)^T = B^T A^T$

Proof Look at a component of the matrix $(AB)^T$

$$((AB)^T)_{ij} = (AB)_{ji} = \sum_{k=1}^p a_{jk}b_{ki} = \sum_{k=1}^p (A^T)_{kj}(B^T)_{ik} =$$

 $\sum_{k=1}^p (B^T)_{ik}(A^T)_{kj} = (B^TA^T)_{ij}.$

August 10, 2017 Sida 25/26

Definition The *transpose* of A is the matrix A^T that satisfies $(Ax, y) = (x, A^T y)$ for every pair of vectors x, y.

Lemma If A maps \mathbb{R}^n into \mathbb{R}^m then $(A)_{ij} = (A^T)_{ji}$.

Proof Use the standard basis $\{e_i\}$ and the scalar product $(x, y) = x^T y$.

Corollary $(AB)^T = B^T A^T$.

Remark Compare with the *adjoint* from functional analysis. The proof gives more insight!

August 10, 2017 Sida 26/26