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Linear Systems of Equations

A linear system of equations can be written as

Ax = b,

where A is a matrix, x is the solution, and b is the right hand side.

Lemma A linear system of equations Ax = b has a

solution if b ∈ Range(A).

Remark If A has a non-trivial null-space then if x1 is a solution and

x2 ∈ null(A) we have A(x1 + x2) = Ax1 + 0 = b so x1 + x2 is a also

solution.
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Lemma Let A ∈ R
n×n. If Null(A) = {0} then A−1 exists

and A is called non-singular.

Remark Suppose A ∈ R
m×n, m > n, then A−1 does not exist. If

b ∈ Range(A) a solution to Ax = b exists. If null(A) = {0} then the

solution is unique.

Lemma Let A ∈ R
n×n. Then then following are

equivalent: det(A) 6= 0, A−1 exists, and Rank(A) = n.

Remark Not very useful for checking if Ax = b has a solution.
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Solving Linear Systems of Equations

Solve Ax = b where





1 2 2

4 4 2

4 6 4



 x =





3

6

10





Method Reduce A to upper triangular form using row

operations and partial pivoting.

Following the pivoting strategy we exchange rows one and two:





1 2 2 3

4 4 2 6

4 6 4 10



 ∼





4 4 2 6

1 2 2 3

4 6 4 10




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Use multipliers m21 = 0.25 and m31 = 1 to eliminate a21 and a31.

Pivot again by exchanging rows 2 and 3.





4 4 2 6

0 1 1.5 1.5
0 2 2 4



 ∼





4 4 2 6

0 2 2 4

0 1 1.5 1.5





Now use a multiplier m32 = 0.5 to eliminate a32. Then solve the

triangular system using backwards substitution.





4 4 2 6

0 2 2 4

0 0 0.5 −0.5



 =⇒ x =





−1

3

−1





This is called Gaussian Elimination!
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Definition Row operations use a Gauss transformation

matrix M and row exchanges use Permutation matrix P.

Example A Gauss-transformation has the structure

M





x1

x2

x3



 =





x1

x2 − m21x1

x3 − m31x1



 =⇒ M =





1 0 0

−m21 1 0

−m31 0 1



 .

and an example of a permutation matrix is

P23





x1

x2

x3



 =





x1

x3

x2



 =⇒ P23 =





1 0 0

0 0 1

0 1 0



 .

Both P−1 and M−1 exists. What is M−1?
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Repeat the steps taken to reduce A to upper triangular form using

Gauss transformations and permutation matrices.

First exchange rows 1 and 2

P12A =





0 1 0

1 0 0

0 0 1









1 2 2

4 4 2

4 6 4



 =





4 4 2

1 2 2

4 6 4





Second use a Gauss transformation M1 to eliminate a21 and a31.

M1(P12A) =





1 0 0

−0.25 1 0

−1 0 1









4 4 2

1 2 2

4 6 4



 =





4 4 2

0 1 1.5
0 2 2




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Continue and exchange rows 2 and 3

P23(M1P12A) =





1 0 0

0 0 1

0 1 0









4 4 2

0 1 1.5
0 2 2



 =





4 4 2

0 2 2

0 1 1.5





Lastly use a Gauss transformation M2 to eliminate a32

M2(P23M1P12A) =





1 0 0

0 1 0

0 −0.5 1









4 4 2

0 2 2

0 1 1.5



 =





4 4 2

0 2 2

0 0 0.5



 = U

We now have M2P23M1P12A = U or P12A = M−1
1 PT

23M−1
2 U.
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Multiply both sides by P23 to obtain

P23P12A = P23M−1
1 PT

23M−1
2 U,

or PA = LU where,

P = P23P12 =





0 1 0

0 0 1

1 0 0



 , U =





4 4 2

0 2 2

0 0 0.5



 ,

L = P23M−1
1 PT

23M−1
2 =





1 0 0

1 1 0

0.25 −0.5 1



 .

This is called the LU decomposition!
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The LU Decomposition

Theorem Every non-singular matrix A can be written

PA = LU, where P is a permutation matrix, L and U are

triangular, non–singular, and |L| ≤ 1.

Remarks Requires 2n3/3 multiply/additions to compute. Most

efficient way to check if a matrix A is non-singular.

Example Use the LU decomposition for solving a linear system

Ax = b. In Matlab

>> [L,U,P]=lu(A);

>> y=L\(P*b); x = U\y;
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The Cholesky decomposition

Definition A matrix A ∈ R
n×n is positive definite if

xTAx > 0, for every x 6= 0.

Proposition If A is symmetric and positive definite then

pivoting is not needed and A = RTR is the Cholesky

decomposition.

Remark Exactly half the work and memory compared to regular

LU-decomposition. In Matlab we use chol.
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Sensitivity of Linear systems

Lemma Suppose Ax = b and we are given inexact data

bδ = b + δb. The resulting error is

‖δx‖

‖x‖
≤ ‖A‖‖A−1‖.

‖δb‖

‖b‖
.

Definition The condition number is κ(A) = ‖A‖‖A−1‖.

Remark The condition number is a measure of how sensitive a linear

system is with respect to errors in the right hand side.
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The Residual

Definition The residual of an approximate solution x̂ to a

linear system Ax = b is r = b − Ax̂.

Lemma The error in an approximate solution x̂ can be

estimated as ‖x − x̂‖ ≤ ‖A−1‖‖r‖.

Remark If a system is well-conditioned and the residual is small then

the solution is accurate.
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The Least Squares Problem

b

r = b − Ax

Ax

Range(A)

Definition Let A ∈ R
m×n, m > n. The least squares

problem is to find the x ∈ R
n that minimize

‖Ax − b‖2.

Remark The least squares problem always has a solution.
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Proposition The following are equivalent

(1) x = argmin‖Ax − b‖2.

(2) r = b − Ax⊥Range(A).

(3) ATAx = ATb.

Remark The normal equations can be solved using the Cholesky

decomposition, but

κ2(A
T A) = (κ2(A))

2,

so that should be avoided.
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Definition If rank(A) = n then A+ = (ATA)−1AT is

called the pseudo inverse.

Lemma If rank(A) = n then the solution to the least

squares problem is given by x = A+b.

Remark If Rank(A) < n the least squares problem does not have a

unique solution.
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Data fitting

Example Fit a polynomial p(t) = c0 + c1t + c2t2 to a data

{(ti, yi)}
m
i=1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

How can we formulate this as a least squares problem?
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Matlab Suppose the data is stored in two vectors t and y.

>> A=[ t.^0 t.^1 t.^2]; b=y; c=(A’*A)\(A’*b);

>> tt=0:0.1:2;yy=c(1)+c(2)*tt+c(3)*tt.^2;

>> plot(t,y,’x’,tt,yy);

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3
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Geometrical Solution

Let PA be the orthogonal projection onto Range(A). Then

Ax = PAb.

The residual is

r = (I − PA)b.

How to compute the projection onto Range(A)?

Lemma Suppose Q = (q1, . . . , qn) is an orthogonal basis

for Range(A). Then

PA = QQT .
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Gram-Schmidt Orthogonalization

Algorithm Compute an orthogonal basis for Range(A),
A = (a1, . . . , an), by

r11 = ‖a1‖2, q1 = a1/r11.

for j = 2, . . . , n

q̃j = aj.

for i = 2, . . . , j − 1

rij = qT
i q̃j.

q̃j = q̃j − rijqi.

end

rjj = ‖q̃j‖2, qj = q̃j/rjj.

end

Remark The solution to the least squares problem is obtained by

solving Ax = PAb = QQTb ∈ Range(A).
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The QR Decomposition

Lemma Let A ∈ R
m×n, m > n. Then A can be factorized

as

A = Q

(

R

0

)

,

where Q ∈ R
m×m is orthogonal and R ∈ R

n×n is upper

triangular. If rank(A) = n then R is non-singular.

Definition Let Q = (Q1,Q2) where Q1 ∈ R
m×n. Then

A = Q1R is called the reduced QR decomposition.

Remark The columns of Q1 form an orthonormal basis for Range(A).
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Computing Projections

Lemma Suppose the columns of Q1 = (q1, . . . , qk) are

orthogonal. Then the orthogonal projection on the

subspace span(q1, . . . , qk) is

P = Q1QT
1 .

Application In computer graphics an object is represented by a set of

polygons. Each corner of the polygons have known coordinates in R
3.

In order to draw the object on screen we need to compute projections

of the coordinate vectors onto the screen.

If we draw the polygons in the order closest last then we obtain a

correct image. Thus we also need the distance z from the plane to the

polygons. This is called z–buffer technique.

How to organize the computations?
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~q2

~q3

~q1

P1

P2

P3

P′

1

The Screen

The polygon, with corners, {P1,P2,P3}, should be projected onto the

screen span(~q2,~q3) in the direction given by the normal vector ~q1.

We obtain

P′

k = (qT
2 Pk)q2 + (qT

3 Pk)q3, and zk = (~qT
1 Pk).
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Example We create a matrix P containing the corners of a cube.

>> P =

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

>> ind=[1 2 4 3 1 5 6 2 6 8 4 8 7 5 7 3];

>> plot3(P(1,ind),P(2,ind),P(3,ind),’b-*’);

Can we recreate the same figure by projection and using a 2D plot?
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Let Sk be the projection of Pk on the screen and q1 be the normal to

the plane. In Matlab

>> q1=[1 1 0]’;[Q,R]=qr(q1);

>> for k=1:8, S(:,k)=Q(:,2:3)’*P(:,k);,end

>> ind=[1 2 4 3 1 5 6 2 6 8 4 8 7 5 7 3];

>> plot(S(1,ind),S(2,ind),’b-*’);

The distance from the screen to the points are

>> for k=1:8, z(k)=Q(:,1)’*P(:,k);,end

Not needed here since we draw hidden lines.
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q
1

=(1  0  1) T

q
1

=(4  1  1) T

q
1

=(4  1 -2) T

We view the cube from different directions q1. What we see on the

screen is the projection in the direction q1.

If we draw surfaces we need to sort with respect to the distance from

the screen. This called z-buffer technique.
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The QR Decomposition and Least squares

Lemma If Q is orthogonal then, for any x ∈ R
n,

‖Qx‖2 = ‖x‖2.

Proof This follows from

‖Qy‖2
2 = (Qy)T(Qy) = yT QTQy = yTy = ‖y‖2

2.

Lemma Suppose A = Q1R is the reduced QR

decomposition. The least squares solution is

x = R−1(QT
1 b).
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Matlab Compute the reduced QR decomposition and find the solution

by

>> [Q,R]=qr(A,0);

>> x=R\(Q’*b);

Remark Typically m >> n. Dimensions m = 103 − 105 and

n = 5 − 50 are not unusual.

Question How to compute the QR decomposition efficiently?
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