Linear Systems of Equations

A linear system of equations can be written as

$$
A x=b,
$$

where A is a matrix, x is the solution, and b is the right hand side.

Lemma A linear system of equations $A x=b$ has a solution if $b \in \operatorname{Range}(A)$.

Remark If A has a non-trivial null-space then if x_{1} is a solution and $x_{2} \in \operatorname{null}(A)$ we have $A\left(x_{1}+x_{2}\right)=A x_{1}+0=b$ so $x_{1}+x_{2}$ is a also solution.

Lemma Let $A \in \mathbb{R}^{n \times n}$. If $\operatorname{Null}(A)=\{0\}$ then A^{-1} exists and A is called non-singular.

Remark Suppose $A \in \mathbb{R}^{m \times n}, m>n$, then A^{-1} does not exist. If $b \in \operatorname{Range}(A)$ a solution to $A x=b$ exists. If $\operatorname{null}(A)=\{0\}$ then the solution is unique.

Lemma Let $A \in \mathbb{R}^{n \times n}$. Then then following are equivalent: $\operatorname{det}(A) \neq 0, A^{-1}$ exists, and $\operatorname{Rank}(A)=n$.

Remark Not very useful for checking if $A x=b$ has a solution.

Solving Linear Systems of Equations

Solve $A x=b$ where

$$
\left(\begin{array}{lll}
1 & 2 & 2 \\
4 & 4 & 2 \\
4 & 6 & 4
\end{array}\right) x=\left(\begin{array}{c}
3 \\
6 \\
10
\end{array}\right)
$$

Method Reduce A to upper triangular form using row operations and partial pivoting.

Following the pivoting strategy we exchange rows one and two:

$$
\left(\begin{array}{ccc|c}
1 & 2 & 2 & 3 \\
4 & 4 & 2 & 6 \\
4 & 6 & 4 & 10
\end{array}\right) \quad \sim\left(\begin{array}{ccc|c}
4 & 4 & 2 & 6 \\
1 & 2 & 2 & 3 \\
4 & 6 & 4 & 10
\end{array}\right)
$$

Use multipliers $m_{21}=0.25$ and $m_{31}=1$ to eliminate a_{21} and a_{31}.
Pivot again by exchanging rows 2 and 3 .

$$
\left(\begin{array}{ccc|c}
4 & 4 & 2 & 6 \\
0 & 1 & 1.5 & 1.5 \\
0 & 2 & 2 & 4
\end{array}\right) \sim\left(\begin{array}{ccc|c}
4 & 4 & 2 & 6 \\
0 & 2 & 2 & 4 \\
0 & 1 & 1.5 & 1.5
\end{array}\right)
$$

Now use a multiplier $m_{32}=0.5$ to eliminate a_{32}. Then solve the triangular system using backwards substitution.

$$
\left(\begin{array}{ccc|c}
4 & 4 & 2 & 6 \\
0 & 2 & 2 & 4 \\
0 & 0 & 0.5 & -0.5
\end{array}\right) \quad \Longrightarrow \quad x=\left(\begin{array}{c}
-1 \\
3 \\
-1
\end{array}\right)
$$

This is called Gaussian Elimination!

Repeat the steps taken to reduce A to upper triangular form using
Gauss transformations and permutation matrices.
First exchange rows 1 and 2

$$
P_{12} A=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 2 \\
4 & 4 & 2 \\
4 & 6 & 4
\end{array}\right)=\left(\begin{array}{lll}
4 & 4 & 2 \\
1 & 2 & 2 \\
4 & 6 & 4
\end{array}\right)
$$

Second use a Gauss transformation M_{1} to eliminate a_{21} and a_{31}.
$M_{1}\left(P_{12} A\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ -0.25 & 1 & 0 \\ -1 & 0 & 1\end{array}\right)\left(\begin{array}{lll}4 & 4 & 2 \\ 1 & 2 & 2 \\ 4 & 6 & 4\end{array}\right)=\left(\begin{array}{ccc}4 & 4 & 2 \\ 0 & 1 & 1.5 \\ 0 & 2 & 2\end{array}\right)$

Definition Row operations use a Gauss transformation matrix M and row exchanges use Permutation matrix P.

Example A Gauss-transformation has the structure
$M\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}x_{1} \\ x_{2}-m_{21} x_{1} \\ x_{3}-m_{31} x_{1}\end{array}\right) \quad \Longrightarrow \quad M=\left(\begin{array}{ccc}1 & 0 & 0 \\ -m_{21} & 1 & 0 \\ -m_{31} & 0 & 1\end{array}\right)$.

$$
\begin{aligned}
& \text { and an example of a permutation matrix is } \\
& P_{23}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
x_{3} \\
x_{2}
\end{array}\right) \Longrightarrow \quad P_{23}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
\end{aligned}
$$

Both P^{-1} and M^{-1} exists. What is M^{-1} ?

Continue and exchange rows 2 and 3
$P_{23}\left(M_{1} P_{12} A\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{ccc}4 & 4 & 2 \\ 0 & 1 & 1.5 \\ 0 & 2 & 2\end{array}\right)=\left(\begin{array}{ccc}4 & 4 & 2 \\ 0 & 2 & 2 \\ 0 & 1 & 1.5\end{array}\right)$
Lastly use a Gauss transformation M_{2} to eliminate a_{32}
$M_{2}\left(P_{23} M_{1} P_{12} A\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -0.5 & 1\end{array}\right)\left(\begin{array}{ccc}4 & 4 & 2 \\ 0 & 2 & 2 \\ 0 & 1 & 1.5\end{array}\right)=\left(\begin{array}{ccc}4 & 4 & 2 \\ 0 & 2 & 2 \\ 0 & 0 & 0.5\end{array}\right)=U$
We now have $M_{2} P_{23} M_{1} P_{12} A=U$ or $P_{12} A=M_{1}^{-1} P_{23}^{T} M_{2}^{-1} U$.

The LU Decomposition

Multiply both sides by P_{23} to obtain

$$
P_{23} P_{12} A=P_{23} M_{1}^{-1} P_{23}^{T} M_{2}^{-1} U
$$

or $P A=L U$ where,

$$
\begin{gathered}
P=P_{23} P_{12}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \quad U=\left(\begin{array}{ccc}
4 & 4 & 2 \\
0 & 2 & 2 \\
0 & 0 & 0.5
\end{array}\right), \\
L=P_{23} M_{1}^{-1} P_{23}^{T} M_{2}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
0.25 & -0.5 & 1
\end{array}\right) .
\end{gathered}
$$

This is called the $L U$ decomposition!

The Cholesky decomposition

Definition A matrix $A \in \mathbb{R}^{n \times n}$ is positive definite if $x^{T} A x>0$, for every $x \neq 0$.

Proposition If A is symmetric and positive definite then pivoting is not needed and $A=R^{T} R$ is the Cholesky decomposition.

Remark Exactly half the work and memory compared to regular $L U$-decomposition. In Matlab we use chol.

Sensitivity of Linear systems

Theorem Every non-singular matrix A can be written $P A=L U$, where P is a permutation matrix, L and U are triangular, non-singular, and $|L| \leq 1$.

Remarks Requires $2 n^{3} / 3$ multiply/additions to compute. Most efficient way to check if a matrix A is non-singular.

Example Use the $L U$ decomposition for solving a linear system $A x=b$. In Matlab

$$
\begin{aligned}
& \gg[L, U, P]=l u(A) ; \\
& \gg y=L \backslash(P * b) ; x=U \backslash y ;
\end{aligned}
$$

Lemma Suppose $A x=b$ and we are given inexact data $b_{\delta}=b+\delta b$. The resulting error is

$$
\frac{\|\delta x\|}{\|x\|} \leq\|A\|\left\|A^{-1}\right\| \cdot \frac{\|\delta b\|}{\|b\|} .
$$

Definition The condition number is $\kappa(A)=\|A\|\left\|A^{-1}\right\|$.

Remark The condition number is a measure of how sensitive a linear system is with respect to errors in the right hand side.

The Least Squares Problem

Definition The residual of an approximate solution \hat{x} to a linear system $A x=b$ is $r=b-A \hat{x}$.

Lemma The error in an approximate solution \hat{x} can be estimated as $\|x-\hat{x}\| \leq\left\|A^{-1}\right\|\|r\|$.

Remark If a system is well-conditioned and the residual is small then the solution is accurate. problem is to find the $x \in \mathbb{R}^{n}$ that minimize

Definition Let $A \in \mathbb{R}^{m \times n}, m>n$. The least squares

$$
\|A x-b\|_{2}
$$

Remark The least squares problem always has a solution.

Definition If $\operatorname{rank}(A)=n$ then $A^{+}=\left(A^{T} A\right)^{-1} A^{T}$ is called the pseudo inverse.

Lemma If $\operatorname{rank}(A)=n$ then the solution to the least squares problem is given by $x=A^{+} b$.

Remark If $\operatorname{Rank}(A)<n$ the least squares problem does not have a unique solution.

Data fitting

Example Fit a polynomial $p(t)=c_{0}+c_{1} t+c_{2} t^{2}$ to a data
$\left\{\left(t_{i}, y_{i}\right)\right\}_{i=1}^{m}$.

How can we formulate this as a least squares problem?

Geometrical Solution

Let P_{A} be the orthogonal projection onto Range (A). Then

$$
A x=P_{A} b
$$

The residual is

$$
r=\left(I-P_{A}\right) b
$$

How to compute the projection onto Range (A) ?

$$
\begin{aligned}
& \text { Lemma Suppose } Q=\left(q_{1}, \ldots, q_{n}\right) \text { is an orthogonal basis } \\
& \text { for Range }(A) \text {. Then } \\
& \qquad P_{A}=Q Q^{T} .
\end{aligned}
$$

Matlab Suppose the data is stored in two vectors t and y.

```
>> A=[ t.^^0 t.^^1 t.^^2]; b=y; c=( A'^A A)\( A'`*b);
>> tt=0:0.1:2;YY=c(1)+c(2)*tt+c(3)*tt.^2;
>> plot(t,y,'x',tt,yy);
```


Gram-Schmidt Orthogonalization

Algorithm Compute an orthogonal basis for Range(A),
$A=\left(a_{1}, \ldots, a_{n}\right)$, by

$$
\begin{aligned}
& r_{11}=\left\|a_{1}\right\|_{2}, q_{1}=a_{1} / r_{11} . \\
& \text { for } j=2, \ldots, n \\
& \tilde{q}_{j}=a_{j} . \\
& \text { for } i=2, \ldots, j-1 \\
& r_{i j}=q_{i}^{T} \tilde{q}_{j} . \\
& \tilde{q}_{j}=\tilde{q}_{j}-r_{i j} q_{i} . \\
& \text { end } \\
& r_{j j}=\left\|\tilde{q}_{j}\right\|_{2}, q_{j}=\tilde{q}_{j} / r_{j j} . \\
& \text { end }
\end{aligned}
$$

Remark The solution to the least squares problem is obtained by solving $A x=P_{A} b=Q Q^{T} b \in \operatorname{Range}(A)$.

The QR Decomposition

Computing Projections

Lemma Let $A \in \mathbb{R}^{m \times n}, m>n$. Then A can be factorized as

$$
A=Q\binom{R}{0}
$$

where $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $R \in \mathbb{R}^{n \times n}$ is upper triangular. If $\operatorname{rank}(A)=n$ then R is non-singular.

Definition Let $Q=\left(Q_{1}, Q_{2}\right)$ where $Q_{1} \in \mathbb{R}^{m \times n}$. Then $A=Q_{1} R$ is called the reduced $Q R$ decomposition.

Remark The columns of Q_{1} form an orthonormal basis for Range (A).

The polygon, with corners, $\left\{P_{1}, P_{2}, P_{3}\right\}$, should be projected onto the screen $\operatorname{span}\left(\vec{q}_{2}, \vec{q}_{3}\right)$ in the direction given by the normal vector \vec{q}_{1}.

We obtain

$$
P_{k}^{\prime}=\left(q_{2}^{T} P_{k}\right) q_{2}+\left(q_{3}^{T} P_{k}\right) q_{3}, \quad \text { and } \quad z_{k}=\left(\vec{q}_{1}^{T} P_{k}\right)
$$

Lemma Suppose the columns of $Q_{1}=\left(q_{1}, \ldots, q_{k}\right)$ are orthogonal. Then the orthogonal projection on the subspace $\operatorname{span}\left(q_{1}, \ldots, q_{k}\right)$ is

$$
P=Q_{1} Q_{1}^{T}
$$

Application In computer graphics an object is represented by a set of polygons. Each corner of the polygons have known coordinates in \mathbb{R}^{3}. In order to draw the object on screen we need to compute projections of the coordinate vectors onto the screen.

If we draw the polygons in the order closest last then we obtain a correct image. Thus we also need the distance z from the plane to the polygons. This is called z-buffer technique.
How to organize the computations?

Example We create a matrix P containing the corners of a cube.

Can we recreate the same figure by projection and using a $2 D$ plot?

Let S_{k} be the projection of P_{k} on the screen and q_{1} be the normal to the plane. In Matlab

```
>> q1=[1 1 0]';[Q,R]=qr(q1);
>> for k=1:8, S(:,k)=Q(:,2:3)'*P(:,k);,end
>> ind=[[1 2 2 4 3 1 1 5 6 2 % 6 8 4 4 8 7 5 7 3];
>> plot(S(1,ind),S(2,ind),'b-*');
```

The distance from the screen to the points are

$$
\text { >> for } k=1: 8, z(k)=Q(:, 1)^{\prime} * P(:, k) ;, \text { end }
$$

Not needed here since we draw hidden lines.

The QR Decomposition and Least squares

Lemma If Q is orthogonal then, for any $x \in \mathbb{R}^{n}$, $\|Q x\|_{2}=\|x\|_{2}$.

Proof This follows from

$$
\|Q y\|_{2}^{2}=(Q y)^{T}(Q y)=y^{T} Q^{T} Q y=y^{T} y=\|y\|_{2}^{2}
$$

Lemma Suppose $A=Q_{1} R$ is the reduced $Q R$ decomposition. The least squares solution is

$$
x=R^{-1}\left(Q_{1}^{T} b\right)
$$

We view the cube from different directions q_{1}. What we see on the screen is the projection in the direction q_{1}.

If we draw surfaces we need to sort with respect to the distance from the screen. This called z-buffer technique.

Matlab Compute the reduced $Q R$ decomposition and find the solution by

```
>> [Q,R]=qr(A,O);
>> X=R\(Q'*b);
```

Remark Typically $m \gg n$. Dimensions $m=10^{3}-10^{5}$ and $n=5-50$ are not unusual.

Question How to compute the $Q R$ decomposition efficiently?

