TANA15/Lecture 2 - Contents

Linear Systems of Equations

A linear system of equations can be written as

Ax = b,

where *A* is a matrix, *x* is the solution, and *b* is the right hand side.

Lemma A *linear system of equations* Ax = b has a solution if $b \in \text{Range}(A)$.

Remark If *A* has a non-trivial null-space then if x_1 is a solution and $x_2 \in \text{null}(A)$ we have $A(x_1 + x_2) = Ax_1 + 0 = b$ so $x_1 + x_2$ is a also solution.

August 10, 2017 Sida 2/28

Solving Linear Systems of Equations

Solve Ax = b where

1	1	2	2		(3	
4	4	4	2	x =		6	
	4	6	4 /			10	Ϊ

Method Reduce *A* to upper triangular form using row operations and partial pivoting.

Following the pivoting strategy we exchange rows one and two:

1	1	2	2	3		(4	4	2	6 \
	4	4	2	6	\sim	1	2	2	3
ſ	4	6	4	10 /		4	6	4	10 /

Linear Systems of Equations

- The *LU* Decomposition. Cholesky Decomposition.
- Sensitivity, Condition number, Residual.

Least Squares Problems

- Normal Equations. Data fitting.
- Gram-Schmidt ortogonalization.
- The *QR* decomposition. Projections.

August 10, 2017 Sida 1/28

Lemma Let $A \in \mathbb{R}^{n \times n}$. If Null $(A) = \{0\}$ then A^{-1} exists and A is called *non-singular*.

Remark Suppose $A \in \mathbb{R}^{m \times n}$, m > n, then A^{-1} does not exist. If $b \in \text{Range}(A)$ a solution to Ax = b exists. If $\text{null}(A) = \{0\}$ then the solution is unique.

Lemma Let $A \in \mathbb{R}^{n \times n}$. Then then following are equivalent: det $(A) \neq 0$, A^{-1} exists, and Rank(A) = n.

Remark Not very useful for checking if Ax = b has a solution.

Use multipliers $m_{21} = 0.25$ and $m_{31} = 1$ to eliminate a_{21} and a_{31} . Pivot again by exchanging rows 2 and 3.

$$\begin{pmatrix} 4 & 4 & 2 & 6 \\ 0 & 1 & 1.5 & 1.5 \\ 0 & 2 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 4 & 4 & 2 & 6 \\ 0 & 2 & 2 & 4 \\ 0 & 1 & 1.5 & 1.5 \end{pmatrix}$$

Now use a multiplier $m_{32} = 0.5$ to eliminate a_{32} . Then solve the triangular system using backwards substitution.

$$\begin{pmatrix} 4 & 4 & 2 & | & 6 \\ 0 & 2 & 2 & | & 4 \\ 0 & 0 & 0.5 & | & -0.5 \end{pmatrix} \implies x = \begin{pmatrix} -1 \\ 3 \\ -1 \end{pmatrix}$$

This is called Gaussian Elimination!

August 10, 2017 Sida 5/28

Definition Row operations use a *Gauss transformation matrix M* and row exchanges use *Permutation matrix P*.

Example A Gauss-transformation has the structure

$$M\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} x_1\\ x_2 - m_{21}x_1\\ x_3 - m_{31}x_1 \end{pmatrix} \implies M = \begin{pmatrix} 1 & 0 & 0\\ -m_{21} & 1 & 0\\ -m_{31} & 0 & 1 \end{pmatrix}.$$

and an example of a permutation matrix is

$$P_{23}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_3 \\ x_2 \end{pmatrix} \implies P_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Both P^{-1} and M^{-1} exists. What is M^{-1} ?

August 10, 2017 Sida 6/28

Repeat the steps taken to reduce *A* to upper triangular form using Gauss transformations and permutation matrices.

First exchange rows 1 and 2

$$P_{12}A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 \\ 4 & 4 & 2 \\ 4 & 6 & 4 \end{pmatrix} = \begin{pmatrix} 4 & 4 & 2 \\ 1 & 2 & 2 \\ 4 & 6 & 4 \end{pmatrix}$$

Second use a Gauss transformation M_1 to eliminate a_{21} and a_{31} .

$$M_1(P_{12}A) = \begin{pmatrix} 1 & 0 & 0 \\ -0.25 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 4 & 2 \\ 1 & 2 & 2 \\ 4 & 6 & 4 \end{pmatrix} = \begin{pmatrix} 4 & 4 & 2 \\ 0 & 1 & 1.5 \\ 0 & 2 & 2 \end{pmatrix}$$

Continue and exchange rows 2 and 3

$$P_{23}(M_1P_{12}A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 4 & 4 & 2 \\ 0 & 1 & 1.5 \\ 0 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 4 & 2 \\ 0 & 2 & 2 \\ 0 & 1 & 1.5 \end{pmatrix}$$

Lastly use a Gauss transformation M_2 to eliminate a_{32}

$$M_2(P_{23}M_1P_{12}A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -0.5 & 1 \end{pmatrix} \begin{pmatrix} 4 & 4 & 2 \\ 0 & 2 & 2 \\ 0 & 1 & 1.5 \end{pmatrix} = \begin{pmatrix} 4 & 4 & 2 \\ 0 & 2 & 2 \\ 0 & 0 & 0.5 \end{pmatrix} = U$$

We now have $M_2 P_{23} M_1 P_{12} A = U$ or $P_{12} A = M_1^{-1} P_{23}^T M_2^{-1} U$.

Multiply both sides by P_{23} to obtain

$$P_{23}P_{12}A = P_{23}M_1^{-1}P_{23}^TM_2^{-1}U,$$

or PA = LU where,

$$P = P_{23}P_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad U = \begin{pmatrix} 4 & 4 & 2 \\ 0 & 2 & 2 \\ 0 & 0 & 0.5 \end{pmatrix},$$
$$L = P_{23}M_1^{-1}P_{23}^TM_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0.25 & -0.5 & 1 \end{pmatrix}.$$

This is called the LU decomposition!

August 10, 2017 Sida 9/28

The Cholesky decomposition

Definition A matrix $A \in \mathbb{R}^{n \times n}$ is *positive definite* if $x^T A x > 0$, for every $x \neq 0$.

Proposition If *A* is symmetric and positive definite then pivoting is not needed and $A = R^T R$ is the *Cholesky decomposition*.

Remark Exactly half the work and memory compared to regular *LU*-decomposition. In Matlab we use chol.

The LU Decomposition

Theorem Every non-singular matrix *A* can be written PA = LU, where *P* is a permutation matrix, *L* and *U* are triangular, non–singular, and $|L| \le 1$.

Remarks Requires $2n^3/3$ multiply/additions to compute. Most efficient way to check if a matrix *A* is non-singular.

Example Use the *LU* decomposition for solving a linear system Ax = b. In Matlab

August 10, 2017 Sida 10/28

Sensitivity of Linear systems

Lemma Suppose Ax = b and we are given inexact data $b_{\delta} = b + \delta b$. The resulting error is

$$\frac{\|\delta x\|}{\|x\|} \le \|A\| \|A^{-1}\| \cdot \frac{\|\delta b\|}{\|b\|}.$$

Definition The *condition number* is $\kappa(A) = ||A|| ||A^{-1}||$.

Remark The condition number is a measure of how sensitive a linear system is with respect to errors in the right hand side.

Definition The *residual* of an approximate solution \hat{x} to a linear system Ax = b is $r = b - A\hat{x}$.

Lemma The error in an approximate solution \hat{x} can be estimated as $||x - \hat{x}|| \le ||A^{-1}|| ||r||$.

Remark If a system is *well-conditioned* and the *residual* is small then the solution is accurate.

Definition Let $A \in \mathbb{R}^{m \times n}$, m > n. The *least squares problem* is to find the $x \in \mathbb{R}^n$ that minimize

 $\|Ax-b\|_2.$

Remark The least squares problem always has a solution.

August 10, 2017 Sida 14/28

Proposition The following are equivalent

- (1) $x = \operatorname{argmin} ||Ax b||_2.$ (2) $r = b - Ax \perp \operatorname{Range}(A).$
- $(3) \quad A^T A x = A^T b.$

Remark The *normal equations* can be solved using the Cholesky decomposition, but

$$\kappa_2(A^T A) = (\kappa_2(A))^2,$$

so that should be avoided.

Definition If rank(A) = n then $A^+ = (A^T A)^{-1} A^T$ is called the *pseudo inverse*.

Lemma If rank(A) = n then the solution to the least squares problem is given by $x = A^+b$.

Remark If Rank(A) < n the least squares problem does not have a unique solution.

August 10, 2017 Sida 13/28

Example Fit a polynomial $p(t) = c_0 + c_1t + c_2t^2$ to a data $\{(t_i, y_i)\}_{i=1}^m$.

How can we formulate this as a least squares problem?

August 10, 2017 Sida 17/28

Matlab Suppose the data is stored in two vectors t and y.

>> A=[t.^0 t.^1 t.^2]; b=y; c=(A'*A) \ (A'*b); >> tt=0:0.1:2;yy=c(1)+c(2)*tt+c(3)*tt.^2; >> plot(t,y,'x',tt,yy);

August 10, 2017 Sida 18/28

Geometrical Solution

Let P_A be the *orthogonal projection* onto Range(A). Then

 $Ax = P_A b.$

The residual is

$$r = (I - P_A)b.$$

How to compute the projection onto Range(A)?

Lemma Suppose $Q = (q_1, \ldots, q_n)$ is an orthogonal basis for Range(A). Then

$$P_A = QQ^T$$

Gram-Schmidt Orthogonalization

Algorithm Compute an *orthogonal basis* for Range(A), $A = (a_1, \dots, a_n), \text{ by}$ $r_{11} = ||a_1||_2, \ q_1 = a_1/r_{11}.$ for $j = 2, \dots, n$ $\tilde{q}_j = a_j.$ for $i = 2, \dots, j - 1$ $r_{ij} = q_i^T \tilde{q}_j.$ $\tilde{q}_j = \tilde{q}_j - r_{ij}q_i.$ end $r_{jj} = ||\tilde{q}_j||_2, \ q_j = \tilde{q}_j/r_{jj}.$ end

Remark The solution to the least squares problem is obtained by solving $Ax = P_A b = QQ^T b \in \text{Range}(A)$.

Lemma Let $A \in \mathbb{R}^{m \times n}$, m > n. Then A can be factorized as

 $A = Q \left(\begin{array}{c} R \\ 0 \end{array} \right),$

where $Q \in \mathbb{R}^{m \times m}$ is *orthogonal* and $R \in \mathbb{R}^{n \times n}$ is upper triangular. If rank(A) = n then R is non-singular.

Definition Let $Q = (Q_1, Q_2)$ where $Q_1 \in \mathbb{R}^{m \times n}$. Then $A = Q_1 R$ is called the *reduced QR decomposition*.

Remark The columns of Q_1 form an orthonormal basis for Range(A).

August 10, 2017 Sida 21/28

The polygon, with corners, $\{P_1, P_2, P_3\}$, should be projected onto the screen span (\vec{q}_2, \vec{q}_3) in the direction given by the *normal vector* \vec{q}_1 .

We obtain

$$P'_k = (q_2^T P_k)q_2 + (q_3^T P_k)q_3$$
, and $z_k = (\vec{q}_1^T P_k)$.

Computing Projections

Lemma Suppose the columns of $Q_1 = (q_1, \ldots, q_k)$ are orthogonal. Then the *orthogonal projection* on the subspace span (q_1, \ldots, q_k) is

 $P = Q_1 Q_1^T.$

Application In computer graphics an object is represented by a set of polygons. Each corner of the polygons have known coordinates in \mathbb{R}^3 . In order to draw the object on screen we need to compute projections of the coordinate vectors onto the screen.

If we draw the polygons in the order *closest last* then we obtain a correct image. Thus we also need the distance z from the plane to the polygons. This is called z-buffer technique.

How to organize the computations?

August 10, 2017 Sida 22/28

Example We create a matrix *P* containing the corners of a cube.

>>	P =							
	0	1	0	1	0	1	0	1
	0	0	1	1	0	0	1	1
	0	0	0	0	1	1	1	1
>>	ind=[2	L 2 4	3 1	562	68	487	57	3];
>>	plot3	(P(1,	ind),	P(2,i	nd),P	(3, ind	d),'b	-*');

Can we recreate the same figure by projection and using a 2D plot?

Let S_k be the projection of P_k on the screen and q_1 be the normal to the plane. In Matlab

>> q1=[1 1 0]';[Q,R]=qr(q1); >> for k=1:8, S(:,k)=Q(:,2:3)'*P(:,k);,end >> ind=[1 2 4 3 1 5 6 2 6 8 4 8 7 5 7 3]; >> plot(S(1,ind),S(2,ind),'b-*');

The distance from the screen to the points are

>> for k=1:8, z(k)=Q(:,1)'*P(:,k);,end

Not needed here since we draw hidden lines.

We view the cube from different directions q_1 . What we see on the screen is the projection in the direction q_1 .

If we draw surfaces we need to sort with respect to the distance from the screen. This called *z*-buffer technique.

August 10, 2017 Sida 25/28

The QR Decomposition and Least squares

Lemma If *Q* is *orthogonal* then, for any $x \in \mathbb{R}^n$, $||Qx||_2 = ||x||_2$.

Proof This follows from

$$||Qy||_2^2 = (Qy)^T (Qy) = y^T Q^T Qy = y^T y = ||y||_2^2$$

Lemma Suppose $A = Q_1 R$ is the reduced QR decomposition. The least squares solution is

$$x = R^{-1}(Q_1^T b)$$

Matlab Compute the reduced *QR* decomposition and find the solution by

Remark Typically m >> n. Dimensions $m = 10^3 - 10^5$ and n = 5 - 50 are not unusual.

Question How to compute the *QR* decomposition efficiently?

August 10, 2017 Sida 26/28