The QR Decomposition

- Householder Reflections.
- Avoiding the Q.
- Uniqueness.

Structred Least Squares problems

• Givens Rotations and Row updating.

Applications

• Circle fitting, Tikhonov Regularization, Image Deblurring.

Lemma Let $A \in \mathbb{R}^{m \times n}$, m > n. Then A can be factorized as

$$A = Q \left(\begin{array}{c} R \\ 0 \end{array}\right)$$

where $Q \in \mathbb{R}^{m \times m}$ is *orthogonal* and $R \in \mathbb{R}^{n \times n}$ is triangular.

Remark Typically m >> n so R is small but Q is very large.

August 10, 2017 Sida 1/30

Reflections

Definition A *Householder reflection* is a matrix of the form, $H(v) = I - 2\frac{vv^{T}}{v^{T}v}.$

Lemma Let $x \in \mathbb{R}^m$ and $v = x + \operatorname{sign}(x_1) ||x||_2 e_1$ then, $Hx = \pm ||x||_2 e_1 = \begin{pmatrix} \pm ||x||_2 \\ 0 \end{pmatrix}.$

Remarks Computing Hx requires $\mathcal{O}(m)$ operations. Reflections are orthogonal and symmetric.

Example Let $x = (1, -1, 2, -3)^T$. Then

```
>> v=x; v(1)=v(1)+norm(x);
```

v' = 4.8730 -1.0000 2.0000 -3.0000

>> y=x-2*(v'*x)/(v'*v)*v

y' = -3.8730 -0.0000 0.0000 -0.0000 August 10, 2017 Sida 2/30

Example Let *A* be a $m \times 3$ matrix. Pick $x_1 = A(1 : m, 1)$, $v_1 = x_1 + ||x_1||_2 e_1$ and compute

$$H(v_1)A = \begin{pmatrix} ||x_1|| & \gamma^T \\ 0 & \widetilde{A}_2 \end{pmatrix} = \begin{pmatrix} + & + & + \\ 0 & + & + \\ 0 & + & + \\ 0 & + & + \end{pmatrix} = A_2.$$

Next let $x_2 = A_2(2:m,2)$ and $v_2 = x_2 + ||x_2||_2 e_1$. We obtain

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & H(v_2) \end{array}\right) A_2 = \left(\begin{array}{cc} x & x & x \\ 0 & + & + \\ 0 & 0 & + \\ 0 & 0 & + \end{array}\right) = A_3.$$

August 10, 2017 Sida 5/30

Finally let $x_3 = A_2(3 : m, 3)$ and $v_3 = x_3 + ||x_3||_2 e_1$.

$$\left(\begin{array}{rrrr}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & H(v_3)\end{array}\right)A_3 = \left(\begin{array}{rrrr}x & x & x\\ 0 & x & x\\ 0 & 0 & +\\ 0 & 0 & 0\end{array}\right) = \left(\begin{array}{r}R\\ 0\end{array}\right).$$

We have computed a decomposition A = QR where

$$Q = H(v_1)^T H(v_2)^T H(v_3)^T.$$

August 10, 2017 Sida 6/30

Avoiding the Q

Solve min $||Ax - b||_2$ with as little work as possible

Proposition Compute the decomposition of the
augmented matrix $[A,b] = Q\begin{pmatrix} R\\ 0 \end{pmatrix} = Q\begin{pmatrix} R_1 & \gamma\\ 0 & \alpha\\ 0 & 0 \end{pmatrix}, \quad R_1 \in \mathbb{R}^{n \times n}, \gamma \in \mathbb{R}^n.$ The least squares solution is $x = R_1^{-1} \gamma$. The residual is $|\alpha|$.

Conclusion We do not need Q explicitly. Solving a least squares problem of size $m \times n$ requires $\mathcal{O}(mn^2)$ operations.

Lemma Computing *R* using reflections requires $\mathcal{O}(mn^2)$ operations. An additional $\mathcal{O}(m^2n)$ operations are needed to also obtain *Q*.

Lemma Computing Q_1 requires $\mathcal{O}(mn^2)$ additional operations.

Remark The memory needed to store Q and Q_1 is also significant.

Fitting a circle

Example We are given two vectors x and y containing m = 13 points located on, or near, the circle. How to estimate the radius and center?

Model Any point $(x, y)^T$ on a circle satisfies the equation

$$F(u) = a(x^{2} + y^{2}) + b_{1}x + b_{2}y + 1 = 0,$$

where $u = (a, b_1, b_2)^T$ are unknown parameters.

The center and radius of the circle are

$$z = (x_0, y_0)^T = -(\frac{b_1}{2a}, \frac{b_2}{2a})^T$$
, and, $r^2 = \frac{b_1^2 + b_2^2}{4a^2} - \frac{1}{a}$

What is the corresponding linear system $Ax \approx b$?

August 10, 2017 Sida 9/30

The m = 13 data points $(x_k, y_k)^T$ and the estimated circle.

Question How should we proceed to improve the accuracy?

Data points stored in two vectors x and y. In Matlab

The result is $z \approx (1.4033, 3.6658)^T$ and $r \approx 2.4215$.

The exact circle was $z = (1.2, 3.4)^T$ and r = 2.7. Need more data $(x_k, y_k)^T$ to improve accuracy.

August 10, 2017 Sida 10/30

Structured least squares problems

Have computed $A_1 = Q_1 R_1, A_1 \in \mathbb{R}^{13 \times 3}$, and minimzed $||A_1 u - b_1||_2$.

Given an additional measurement $(x_{14}, y_{14})^T$ we want to minimize

$$\left\| \begin{pmatrix} A_1 \\ a_{14}^T \end{pmatrix} u - \begin{pmatrix} b_1 \\ b_{14} \end{pmatrix} \right\|_2 = \left\| \begin{pmatrix} R_1 \\ a_{14}^T \end{pmatrix} u - \begin{pmatrix} Q_1^T b_1 \\ b_{14} \end{pmatrix} \right\|_2$$

We need the *QR* decomposition of the *structured matrix*

$$\begin{pmatrix} R_1 & Q_1^T b_1 \\ a_{14}^T & b_{14} \end{pmatrix} = \begin{pmatrix} x & x & x & x \\ 0 & x & x & x \\ 0 & 0 & x & x \\ x & x & x & x \end{pmatrix}$$

Already "almost" triangular! Want to take advantage of the structure!

Lemma Suppose
$$x = (x_1, x_2)^T$$
 and set
 $\cos(\theta) = \frac{x_1}{\sqrt{x_1^2 + x_2^2}}$, and, $\sin(\theta) = \frac{x_2}{\sqrt{x_1^2 + x_2^2}}$.
Then
 $Gx = \frac{1}{\|x\|_2} \begin{pmatrix} x_1 & x_2 \\ -x_2 & x_1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \|x\|_2 \\ 0 \end{pmatrix}$.

Definition A *Givens rotation* G_{ii} rotates rows *i* and *j*.

August 10, 2017 Sida 13/30

Example Let *A* be a 4×3 matrix. Apply a sequence of Givens Rotations

Next use a_{22} to zero the elements A(3:4,2), and finally the element a_{33} to zero a_{43}

$$G_{34}G_{24}G_{23}\begin{pmatrix} x & x & x \\ 0 & x & x \\ 0 & x & x \\ 0 & x & x \end{pmatrix} = G_{34}\begin{pmatrix} x & x & x \\ 0 & + & + \\ 0 & 0 & + \\ 0 & 0 & + \end{pmatrix} = \begin{pmatrix} x & x & x \\ 0 & x & x \\ 0 & 0 & + \\ 0 & 0 & 0 \end{pmatrix}$$

Thus
$$A = QR$$
 where $Q = G_{12}^T G_{13}^T G_{14}^T G_{23}^T G_{24}^T G_{34}^T$.

August 10, 2017 Sida 14/30

Observation A matrix $A \in \mathbb{R}^{m \times n}$ has $mn - \frac{1}{2}n^2$ subdiagonal elements. One Givens rotation is needed to zero out each element.

Lemma Computing the *R* using rotations requires $\mathcal{O}(mn^2)$ operations.

Remark Computing R, Q, or Q_1 using either reflections or rotations requires the same amount of work.

Row updating

Have $A_1 = Q_1 R_1$, where $A_1 \in \mathbb{R}^{m \times n}$ and $R_1 \in \mathbb{R}^{n \times n}$. Want the *QR* decomposition of

$$\begin{pmatrix} R_1 & Q_1^T b_1 \\ a_{m+1}^T & b_{m+1} \end{pmatrix} = \begin{pmatrix} x & x & x & x \\ 0 & x & x & x \\ 0 & 0 & x & x \\ x & x & x & x \end{pmatrix}$$

First apply a Givens rotation G_{14} and obtain

$$G_{14}\begin{pmatrix} x & x & x & x \\ 0 & x & x & x \\ 0 & 0 & x & x \\ x & x & x & x \end{pmatrix} = \begin{pmatrix} + & + & + & + \\ 0 & x & x & x \\ 0 & 0 & x & x \\ 0 & + & + & + \end{pmatrix}.$$

Continue and apply rotations G_{24} and G_{34} to obtain

$G_{34}G_{24}$	$\int x$	x	х	x	$=G_{34}$	$\int x$	х	х	x	=	$\int x$	х	x	x	
	0	x	x	x		0	+	+	+		0	x	x	x	
	0	0	x	x		0	0	x	x		0	0	+	+	
	0	x	x	x)		0	0	+	+)		0	0	0	+ /	

Denote the matrix by R_2 . The updated least squares solution is

$$x = R_2(1:n, 1:n)^{-1}R_2(1:n, n+1).$$

Remark Need *n* Givens rotations to restore triangular shape! Only $O(n^2)$ operations. Note that *Q* is not needed!

August 10, 2017 Sida 17/30

The m = 14 data points $(x_k, y_k)^T$ and estimated circle. Now we obtain $z \approx (1.2630, 3.44)^T$ and $r \approx 2.6367$.

Fitting a circle

Example We obtain another measurement (x_{14}, y_{14}) and compute a new row $a_{14}u = b_{14}$. In Matlab:

>> al	4=[x14.	^2+y1	L4.^	2 x14	l y14];	b14	l=−1;	
>> R =	= [R ;	a14	, b	14]					
R =	=								
-	-126.760)5	-9.	9725	-18	.12	45	3.5	816
		0	-4.	8810	1	.46	20	0.3	408
		0		0	0	.30	85	-0.1	882
	28.84	79	-0.	6628	5	.33	00	-1.0	0000
>> fo	or k=1:3	3, R=	=Giv	rens (R,	k,	4); end	l, R
R	=								
	130.001	17	9.	5768	18	.85	54	-3.7	142
		0	5.	6568	-1	.85	55	-0.2	029
		0		0	-0	.41	33	0.3	587
		0		0			0	-0.1	195

August 10, 2017 Sida 18/30

Application: Tikhonov Regularization

If a linear system Ax = b is very ill-conditioned need to stabilize the numerical computations.

Definition The *Tikhonov functional* is,

$$f(\lambda) = \min_{x \in \mathbb{R}^n} ||Ax - b||_2^2 + \lambda^2 ||x||_2^2.$$

Remark Tikhonov regularization is a very popular method for finding approximate solutions to very ill-conditioned systems. Need to solve the problem for many different values of the parameter λ .

This is a structured least squares problem

	$\begin{pmatrix} x \\ x \end{pmatrix}$	x	x			$\int x$	x	x	`
	x	x	x		$= \widetilde{Q}^T$	$\begin{pmatrix} x \\ 0 \end{pmatrix}$	x	x	
$(A)_{-}$	x	x	x			0	0 0	x	
$\left(\begin{array}{c}A\\\lambda I\end{array}\right) =$	x	0	0			x	0	0	
. ,		x				0			
	0 /	0	x)		0	0	x	

Lemma Suppose we have the decomposition A = QR. Then the Tikhonov functional can be evaluated using O(n) additional Givens rotations.

Proof See L. Eldén, *Algorithms for the regularization of ill–conditioned least squares problems*, BIT, 1977.

August 10, 2017 Sida 21/30

The Point Spread function

Definition An image consists of a set of pixels $\{I_{ij}\}$ each with a value corresponding to a specific color. Hence the image is a matrix *I*.

Definition If the exact image is $I_{i_0,j_0} = 1$ and $I_{i,j} = 0$ for $(i,j) \neq (i_0,j_0)$. Then the camera records

$$I_{ij} = P(i - i_0, j - j_0)$$

where *P* is the *point spread function*.

Application: Image Deblurring

Example In Astronomy light from stars is collected during several hours. During this time the object moves across the sky. Also light is diffused when it passes through the atmosphere.

Question Can we reduce the influence of these effects using Linear algebra? How to construct a mathematical model?

August 10, 2017 Sida 22/30

Example The blurring effect of light passing through the atmosphere can be modelled as,

$$P_b(i,j) = \exp\left(\frac{-i^2 - j^2}{2\sigma^2}\right)$$

This means the recorded image is $I_b = A_b I$, where A_b is a matrix.

The original 9×9 image *I* the resulting blurred image $I_b = A_b I$.

Example The effect of object movement during camera exposure. The recorded image is $I_m = A_m I$, where A_m is a matrix.

The original 9×9 image *I* and the resulting image I_m due to object movement. The object appears at several pixels.

August 10, 2017 Sida 25/30

Example We look at a sattelite through a telescope. The sattelite moves horizontally through the image. The image we record is I_r which is subject to a combination of object movement and blurring.

The original 128×128 image *I* showing the "exact" sattelite. Also the degraded image I_r . Can we compensate for these effects?

August 10, 2017 Sida 26/30

Results The restored images using Tikhonov regularization. We have $\lambda = 10^{-5}$ (left) and $\lambda = 10^{-2}$ (right). Too much regularization means the image is not clear. The movement is easily compensated for. The blurring is more difficult.

Observation The Matrices A_b and A_m are both 16384 × 16384 and sparse. It is not feasible to compute the full *QR* decomposition of the combined matrix $A_T = A_b A_m$.

Alternative techniques are needed for realistic applications.

Question Is the *QR* decomposition unique?

Lemma Let R_1, R_2 be upper triangular. Then R_1R_2 and R_1^{-1} are both upper triangular.

Lemma If *A* is both *triangular* and *orthogonal* then *A* is diagonal, and $a_{ii} = \pm 1$.

Proof See problem collection.

August 10, 2017 Sida 29/30

Lemma Let $A = Q_1R_1 = Q_2R_2$ be two different reduced *QR* decompositions. There exists a diagonal matrix *D*, $d_{ii} = \pm 1$, and $R_1 = DR_2$.

Remark The QR decomposition is essentially unique. Possibly the diagonal elements of R can change signs.

If $Q = (Q_1, Q_2)$, where Q_1 is the orthogonal basis for Range(A), then only Q_1 is essentially unique.

August 10, 2017 Sida 30/30