Round-off errors in Linear Algebra

- Catastrophic cancellation. Floating Point arithmetic.
- Forward and Backward analysis.
- Gauss transformations and Orthogonal matrices.
- Analysis of Gaussian Elimination.
- Iterative refinement.

Special Linear Systems

- Symmetric and Positive definite matrices.
- Indefinite matrices. Toeplitz matrices.
- Perturbation results. Sherman-Morrison.

Example Suppose $x=101 \pm 1$ and $y=100 \pm 1$. Compute $z=x-y$ with error bounds. The result is $z=1 \pm 2$.

Observation The error bound Δz is large relative to the result.

Definition Loss of accuracy during addition or subtraction of floating point numbers is called cancellation.

This sometimes occurs during plus or minus operations. Never during multiply or division.

Remark A matrix-vector multiply $y=A x$ consists of many potentially bad operations $y_{i}:=y_{i}+a_{i j} x_{j}$. Can we trust the results?

Definition Suppose $m \leq|x| \leq M$, i.e. x is within the range of the floating point system. $\operatorname{By~} \mathrm{fl}(x)$ we means the closest floating point number to x.

Lemma Let $u=\frac{1}{2} \beta^{1-t}$. Then $\mathrm{fl}(x)=x(1+\epsilon),|\epsilon| \leq u$.

Arithmetic operations are also assumed to satisfy the same bound, i.e.

$$
\frac{\mid f l(a \mathrm{op} b)-a \text { op } b \mid}{\mid a \text { op } b \mid} \leq u, \quad a \text { op } b \neq 0
$$

Holds for $+,-, \cdot, /, \sqrt{x}, \mathrm{e}^{x}, \ldots$.

Compute $x^{T} y$ by the following code

```
S=0;
for i=1:n
    s:=s+x(i)*y(i)
end
```

Lemma If $n u \leq 0.01$ then $\left|\mathrm{fl}\left(x^{T} y\right)-x^{T} y\right| \leq 1.01 n u|x|^{T}|y|$.

Remark If $x^{T} y \ll|x|^{T}|y|$ the relative error in the result may be large.

Gauss transformations and Round-off errors

Lemma If Q is orthogonal then $\mathrm{fl}(Q A)=Q(A+F)$,

Remark This means that multiplication by an orthogonal matrix is backwards stable. The same is true for a sequence of orthogonal matrices.

Important for computing eigenvalues and solving least squares problems.

$$
\text { Corollary } \mathrm{fl}(A B)=A B+E, \quad|E| \leq n u|A||B|+\mathcal{O}\left(u^{2}\right)
$$

Remark Each element of $A B$ is computed as a scalar product.
The result is quite bad if $|A B| \ll|A||B|$.
Note Worst case error bounds are rarely very sharp. Statistical methods often give a better understanding of the actual errors.
where $\|F\|_{2} \leq \mathcal{O}(\mathbf{u})\|A\|_{2}$.

Orthogonal Matrices

Lemma Suppose M is the Guass transformation that zeroes the first column of a matrix A. Then

$$
\mathrm{fl}(M A)=M A+E, \quad|E| \leq 3 \mathbf{u}(|A|+|m||A(1,:)|)+\mathcal{O}\left(u^{2}\right)
$$

where m is the vector of multipliers.

Remarks Partial pivoting means $|m| \leq 1$.

Note that $|m||A(1,:)|$ is an outer-product. The error is zero in the first row and the first column of $M A$.

Round-Off errors and the LU Decomposition

Ideal situation The only error is when A and b are stored in memory.

Suppose $(A+E) \hat{x}=(b+e)$, where

$$
\|E\|_{\infty} \leq u\|A\|_{\infty},\|e\|_{\infty} \leq u\|b\|_{\infty}
$$

holds and also that $u \kappa_{\infty}(A) \leq 1 / 2$. Then

$$
\frac{\|x-\hat{x}\|_{\infty}}{\|x\|_{\infty}} \leq 4 u \kappa_{\infty}(A)
$$

Remark It is not possible to prove a better error bound.

Theorem Let \hat{L} and \hat{U} be the computed LU factors and that we compute the solution $\hat{L} \hat{U} \hat{x}=b$. Then
$(A+E) \hat{x}=b$ with

$$
|E| \leq n u(3|A|+5|\hat{L}||\hat{U}|)+\mathcal{O}\left(u^{2}\right) .
$$

Remark If the factor $|\hat{L}||\hat{U}|$ is small then this would be comparable to the ideal situation. Pivoting makes $l_{i j} \leq 1$ and typically $|\hat{U}|$ is comparable in size to $|A|$.

The growth of elements $u_{i j}$ during Guassian elimination has been studied extensively. Usually the growth rate is very small in practice.

Iterative Refinement

Theorem Suppose no pivoting occurs during the $L U$ decomposition then the computed matrices \hat{L} and \hat{U} satisfy

$$
\hat{L} \hat{U}=A+H=L U+H
$$

where

$$
|H| \leq 3(n-1) u(|A|+|\hat{L}||\hat{U}|)+\mathcal{O}\left(u^{2}\right)
$$

Remark Pivoting doesn't change the analysis.
This is an example of Backwards error analysis. The computed decomposition $\hat{L} \hat{U}$ is the exact $L U$ decomposition of a matrix \hat{A} which is close to A.

Observation If \hat{x} is an approximate solution to $A x=b$, and $\widehat{r}=b-A \widehat{x}$, then the error $e=\widehat{x}-x$ satisfies

$$
A e=A x-A \widehat{x}=b-A \widehat{x}=\widehat{r} .
$$

Idea Compute \widehat{r}, solve for e, and update $\widehat{x}^{(1)}=\widehat{x}+e$.

This is called Iterative refinement. Can repeat the process if needed.

Symmetric and positive definite matrices

Algorithm One step iterative refinement

1. Compute the decomposition $P A=L U$.
2. Solve $A x=b$ to obtain \widehat{x}.
3. Compute residual $\widehat{r}=b-A \widehat{x}$ in extended precision
4. Solve $A e=\widehat{r}$ using the $L U$ decomposition.
5. Update $\widehat{x}:=\widehat{x}+e$

Remark Requires $\mathcal{O}\left(n^{2}\right)$ additional work. If the computed residuals have a few correct digits then usually the error is reduced.

Remark Most problems involve inexact data. It doesn't make sense to work to obtain a higly accurate solution to an imprecise problem.

Remark Theory often says a matrix is positive definite. Examples are covariance matrices and finite element discretizations of elliptic equations.

Theorem If $A \in \mathbb{R}^{n \times n}$ is positive definite and $X_{k} \in \mathbb{R}^{n \times k}$ has rank k then $B=X_{k}^{T} A X_{k}$ is also positive definite.
Definition A matrix $A \in \mathbb{R}^{n \times n}$ is positive definite if $x^{T} A x>0$ for all non-zero $x \in \mathbb{R}^{n}$. If $x^{T} A x \geq 0$ the matrix is positive semi-definite.

Theorem If A is symmetric and positive definite then there exists a unique upper triangular matrix R, with positive diagonal elements, such that

$$
A=R^{T} R .
$$

Remark This is the Cholesky factorization. Requires about half the work compared to regular $L U$ factorization.

The analysis of Cholesky is the same as for the $L U$ decompositon, except $|R|^{T}|R| \approx|A|$ since the largest elements of R are positive. Thus the results are much better.

Corollary The computed Cholesky factor \hat{R} satisfies

$$
\hat{R}^{T} \hat{R}=A+H=R^{T} R+H
$$

where

$$
|H| \leq 3(n-1) u\left(|A|+|\hat{R}|^{T}|\hat{R}|\right)+\mathcal{O}\left(u^{2}\right)
$$

Corollary Let \hat{R} be the computed Cholesky factor and suppose that we compute the solution $\hat{R}^{T} \hat{R} \hat{x}=b$. Then $(A+E) \hat{x}=b$ with

$$
|E| \leq n u\left(3|A|+5\left|\hat{R}^{T}\right||\hat{R}|\right)+\mathcal{O}\left(u^{2}\right)
$$

Toeplitz matrices

Definition A matrix T has Toeplitz structure if there exists scalars $\left\{r_{k}\right\}$ such that $a_{i j}=r_{j-i}$.

Example The matrix

$$
T=\left(\begin{array}{cccc}
r_{0} & r_{1} & r_{2} & r_{3} \\
r_{-1} & r_{0} & r_{1} & r_{2} \\
r_{-2} & r_{-1} & r_{0} & r_{1} \\
r_{-3} & r_{-2} & r_{-1} & r_{0}
\end{array}\right)
$$

has Toeplitz structure.

Definition A matrix is persymmetric if $B=E B^{T} E^{T}$, where $E=\left(e_{n}, \ldots, e_{1}\right)$.

Theorem If A is symmetric and positive semi-definite then $A=L D L^{T}$, with $d_{i i} \geq 0$.

Remark If $\widetilde{a}_{i i}=0$ then symmetric pivoting, $A:=P A P^{T}$, can be used to move a non-zero diagonal element to the pivoting position. If no such element exists the factorization is complete.

Corollary A symmetric and indefinite matrix A can be factored $P A P^{T}=L D L^{T}$.

Example Suppose

$$
A=\left(\begin{array}{cc}
C & B \\
B^{T} & 0
\end{array}\right)
$$

where C is symmetric and positive definite and B has full rank.

Symmetric Toeplitz matrices

Suppose T is a symmetric Toeplitz matrix, with diagonals $\left\{r_{k}\right\}$. The Yule-Walker system is $T_{n} y=-r=-\left(r_{1}, \ldots, r_{n}\right)$, or

$$
\left(\begin{array}{cc}
T_{n-1} & E_{n-1} r \\
r^{T} E_{n-1} & r_{0}
\end{array}\right)\binom{v}{\mu}=-\binom{r_{n-1}}{r_{k+1}}
$$

Remark Durbin's algorithm solves the Yule-Walker equations in $\mathcal{O}\left(n^{2}\right)$ operations.

Lemma The system $T x=b$, where T is a symmetric Toeplitz matrix, can be solved using Levinsons algorithm in $\mathcal{O}\left(n^{2}\right)$ operations. The inverse T^{-1} can be computed using Trench's algorithm in $\mathcal{O}\left(n^{2}\right)$ operations.

Unsymmetric Toeplitz matrices

Suppose we want to solve a system of the form

$$
T=\left(\begin{array}{cccc}
1 & r_{1} & r_{2} & r_{3} \\
p_{1} & 1 & r_{1} & r_{2} \\
p_{2} & p_{1} & 1 & r_{1} \\
p_{3} & p_{2} & p_{1} & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right)
$$

This can be done in $\mathcal{O}\left(n^{2}\right)$ operations.

Remark This means Toeplitz matrices can be used as preconditioners for linear systems derived from finite difference approximations of PDEs

Example Suppose we have a decomposition $P A=L U$ and want to solve $\widehat{A} x=b$, where A and \widehat{A} only differs on one row.

How to organize the computation? How much work is required?

Perturbation Results

$$
\text { Lemma } B^{-1}=A^{-1}-B^{-1}(B-A) A^{-1}
$$

Remark The special case of a rank 1 update $B=A+u \nu^{T}$ is called the Sherman-Morrison formula

$$
\left(A+u v^{T}\right)^{-1}=A^{-1}-A^{-1} u\left(1+v^{T} A^{-1} u\right)^{-1} v^{T} A^{-1}
$$

Special structures, e.g. Toeplitz or Banded, makes A^{-1} easy to compute. Update formulas matrices that are "close" to a special structure cheaper to invert.

