Round-off errors in Linear Algebra

- Catastrophic cancellation. Floating Point arithmetic.
- Forward and Backward analysis.
- Gauss transformations and Orthogonal matrices.
- Analysis of Gaussian Elimination.
- Iterative refinement.

Special Linear Systems

- Symmetric and Positive definite matrices.
- Indefinite matrices. Toeplitz matrices.
- Perturbation results. Sherman-Morrison.

Catastrophic Cancellation

Example Suppose $x = 101 \pm 1$ and $y = 100 \pm 1$. Compute z = x - y with error bounds. The result is $z = 1 \pm 2$.

Observation The error bound Δz is large relative to the result.

Definition Loss of accuracy during addition or subtraction of floating point numbers is called *cancellation*.

This sometimes occurs during plus or minus operations. Never during multiply or division.

Remark A matrix-vector multiply y = Ax consists of many potentially bad operations $y_i := y_i + a_{ij}x_j$. Can we trust the results?

August 24, 2017 Sida 1/23

Floating Point Numbers

Definition A floating point number system is defined by its base β , exponent range [L, U], and precision *t*. A number *x* in the floating point system can be written $x = d_1.d_2d_3...d_t \times \beta^e$,

where

$$0 \le d_i < \beta, \quad d_1 \ne 0, \quad L \le e \le U.$$

Remark zero cannot be written this way but is included in a floating point system.

Example The system (10, 3, -4, 4) includes $x = 8.765 \times 10^2$. Most common is the IEEE double precision system (2, 52, -1022, 1023).

Definition Suppose $m \le |x| \le M$, i.e. *x* is within the range of the floating point system. By fl(x) we means the closest floating point number to *x*.

Lemma Let $u = \frac{1}{2}\beta^{1-t}$. Then $fl(x) = x(1+\epsilon), |\epsilon| \le u$.

Arithmetic operations are also assumed to satisfy the same bound, i.e.

$$\frac{|f(a \operatorname{op} b) - a \operatorname{op} b|}{|a \operatorname{op} b|} \le u, \quad a \operatorname{op} b \ne 0.$$

Holds for $+, -, \cdot, /, \sqrt{x}, e^x, \ldots$

August 24, 2017 Sida 2/23

Compute $x^T y$ by the following code

s=0; for i=1:n s:=s+x(i)*y(i) end

Lemma If $nu \leq 0.01$ then $|\mathbf{fl}(x^T y) - x^T y| \leq 1.01 nu |x|^T |y|$.

Remark If $x^T y \ll |x|^T |y|$ the relative error in the result may be large.

August 24, 2017 Sida 5/23

Orthogonal Matrices

Lemma If *Q* is orthogonal then fl(QA) = Q(A + F), where $||F||_2 \le O(\mathbf{u}) ||A||_2$.

Remark This means that multiplication by an orthogonal matrix is backwards stable. The same is true for a sequence of orthogonal matrices.

Important for computing eigenvalues and solving least squares problems.

Corollary fl(AB) = AB + E, $|E| \le nu|A||B| + \mathcal{O}(u^2)$.

Remark Each element of *AB* is computed as a scalar product.

The result is quite bad if $|AB| \ll |A||B|$.

Note Worst case error bounds are rarely very sharp. Statistical methods often give a better understanding of the actual errors.

August 24, 2017 Sida 6/23

Gauss transformations and Round-off errors

Lemma Suppose *M* is the Guass transformation that zeroes the first column of a matrix *A*. Then

 $fl(MA) = MA + E, \quad |E| \le 3\mathbf{u}(|A| + |m||A(1,:)|) + \mathcal{O}(u^2),$

where m is the vector of multipliers.

Remarks Partial pivoting means $|m| \leq 1$.

Note that |m||A(1,:)| is an outer-product. The error is zero in the first row and the first column of *MA*.

Ideal situation The only error is when *A* and *b* are stored in memory.

Suppose $(A + E)\hat{x} = (b + e)$, where $||E||_{\infty} \le u||A||_{\infty}, ||e||_{\infty} \le u||b||_{\infty},$ holds and also that $u\kappa_{\infty}(A) \le 1/2$. Then $\frac{||x - \hat{x}||_{\infty}}{||x||_{\infty}} \le 4u\kappa_{\infty}(A).$

Remark It is not possible to prove a better error bound.

August 24, 2017 Sida 9/23

Theorem Let \hat{L} and \hat{U} be the computed LU factors and that we compute the solution $\hat{L}\hat{U}\hat{x} = b$. Then $(A + E)\hat{x} = b$ with

$$|E| \le nu(3|A| + 5|\hat{L}||\hat{U}|) + \mathcal{O}(u^2).$$

Remark If the factor $|\hat{L}||\hat{U}|$ is small then this would be comparable to the ideal situation. Pivoting makes $l_{ij} \leq 1$ and typically $|\hat{U}|$ is comparable in size to |A|.

The growth of elements u_{ij} during Guassian elimination has been studied extensively. Usually the growth rate is very small in practice.

Theorem Suppose no pivoting occurs during the LU decomposition then the computed matrices \hat{L} and \hat{U} satisfy

$$\hat{L}\hat{U} = A + H = LU + H.$$

where

$$|H| \le 3(n-1)u(|A| + |\hat{L}||\hat{U}|) + \mathcal{O}(u^2).$$

Remark Pivoting doesn't change the analysis.

This is an example of **Backwards error analysis**. The computed decomposition $\hat{L}\hat{U}$ is the exact LU decomposition of a matrix \hat{A} which is close to A.

August 24, 2017 Sida 10/23

Iterative Refinement

Observation If \hat{x} is an approximate solution to Ax = b, and $\hat{r} = b - A\hat{x}$, then the error $e = \hat{x} - x$ satisfies

$$Ae = Ax - A\hat{x} = b - A\hat{x} = \hat{r}.$$

Idea Compute \hat{r} , solve for e, and update $\hat{x}^{(1)} = \hat{x} + e$.

This is called Iterative refinement. Can repeat the process if needed.

Algorithm One step iterative refinement

- **1.** Compute the decomposition PA = LU.
- **2.** Solve Ax = b to obtain \hat{x} .
- **3.** Compute residual $\hat{r} = b A\hat{x}$ in extended precision.
- **4.** Solve $Ae = \hat{r}$ using the *LU* decomposition.
- **5.** Update $\widehat{x} := \widehat{x} + e$

Remark Requires $O(n^2)$ additional work. If the computed residuals have a few correct digits then usually the error is reduced.

Remark Most problems involve inexact data. It doesn't make sense to work to obtain a higly accurate solution to an imprecise problem.

August 24, 2017 Sida 13/23

Definition A matrix $A \in \mathbb{R}^{n \times n}$ is *positive definite* if $x^T A x > 0$ for all non-zero $x \in \mathbb{R}^n$. If $x^T A x \ge 0$ the matrix is *positive semi-definite*.

Theorem If $A \in \mathbb{R}^{n \times n}$ is *positive definite* and $X_k \in \mathbb{R}^{n \times k}$ has rank *k* then $B = X_k^T A X_k$ is also positive definite.

Remark Theory often says a matrix is positive definite. Examples are covariance matrices and finite element discretizations of elliptic equations.

August 24, 2017 Sida 14/23

Lemma Suppose $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, and $a \in \mathbb{R}$. Then

$$B = \left(\begin{array}{cc} A & b \\ b^T & a \end{array}\right)$$

is *positive definite* if and only if A is positive difinite and $b^T A^{-1}b < a$. In this case

$$\det(B) = \det(A)\det(a - b^T A^{-1}b).$$

Remark This is the basis of a recursive algorithm for computing the Cholesky decomposition.

Theorem If A is *symmetric* and *positive definite* then there exists a unique upper triangular matrix R, with positive diagonal elements, such that

 $A = R^T R.$

Remark This is the *Cholesky factorization*. Requires about half the work compared to regular *LU* factorization.

The analysis of Cholesky is the same as for the *LU* decompositon, except $|R|^T |R| \approx |A|$ since the largest elements of *R* are positive. Thus the results are much better.

Corollary The computed Cholesky factor \hat{R} satisfies $\hat{R}^T \hat{R} = A + H = R^T R + H,$

where

$$|H| \leq 3(n-1)u(|A| + |\hat{R}|^T |\hat{R}|) + \mathcal{O}(u^2).$$

Corollary Let \hat{R} be the computed Cholesky factor and suppose that we compute the solution $\hat{R}^T \hat{R} \hat{x} = b$. Then $(A + E)\hat{x} = b$ with

$$|E| \le nu(3|A| + 5|\hat{R}^T||\hat{R}|) + \mathcal{O}(u^2).$$

August 24, 2017 Sida 17/23

Toeplitz matrices

Definition A matrix *T* has *Toeplitz structure* if there exists scalars $\{r_k\}$ such that $a_{ij} = r_{j-i}$.

Example The matrix

$$T = \begin{pmatrix} r_0 & r_1 & r_2 & r_3 \\ r_{-1} & r_0 & r_1 & r_2 \\ r_{-2} & r_{-1} & r_0 & r_1 \\ r_{-3} & r_{-2} & r_{-1} & r_0 \end{pmatrix}$$

has Toeplitz structure.

Definition A matrix is *persymmetric* if $B = EB^T E^T$, where $E = (e_n, \dots, e_1)$. **Theorem** If A is symmetric and positive semi-definite then $A = LDL^T$, with $d_{ii} \ge 0$.

Remark If $\tilde{a}_{ii} = 0$ then symmetric pivoting, $A := PAP^T$, can be used to move a non-zero diagonal element to the pivoting position. If no such element exists the factorization is complete.

Corollary A *symmetric* and *indefinite* matrix A can be factored $PAP^T = LDL^T$.

Example Suppose

$$A = \left(\begin{array}{cc} C & B \\ B^T & 0 \end{array}\right)$$

where C is symmetric and positive definite and B has full rank.

August 24, 2017 Sida 18/23

Symmetric Toeplitz matrices

Suppose *T* is a symmetric Toeplitz matrix, with diagonals $\{r_k\}$. The Yule-Walker system is $T_n y = -r = -(r_1, \dots, r_n)$, or

$$\begin{pmatrix} T_{n-1} & E_{n-1}r \\ r^{T}E_{n-1} & r_{0} \end{pmatrix} \begin{pmatrix} v \\ \mu \end{pmatrix} = - \begin{pmatrix} r_{n-1} \\ r_{k+1} \end{pmatrix}$$

Remark Durbin's algorithm solves the Yule-Walker equations in $\mathcal{O}(n^2)$ operations.

Lemma The system Tx = b, where *T* is a symmetric Toeplitz matrix, can be solved using *Levinsons* algorithm in $\mathcal{O}(n^2)$ operations. The inverse T^{-1} can be computed using *Trench's* algorithm in $\mathcal{O}(n^2)$ operations.

Perturbation Results

Suppose we want to solve a system of the form

$$T = \begin{pmatrix} 1 & r_1 & r_2 & r_3 \\ p_1 & 1 & r_1 & r_2 \\ p_2 & p_1 & 1 & r_1 \\ p_3 & p_2 & p_1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$$

This can be done in $\mathcal{O}(n^2)$ operations.

Remark This means *Toeplitz* matrices can be used as preconditioners for linear systems derived from finite difference approximations of *PDEs*.

August 24, 2017 Sida 21/23

Lemma $B^{-1} = A^{-1} - B^{-1}(B - A)A^{-1}$.

Remark The special case of a rank 1 update $B = A + uv^T$ is called the Sherman-Morrison formula

$$(A + uv^{T})^{-1} = A^{-1} - A^{-1}u(1 + v^{T}A^{-1}u)^{-1}v^{T}A^{-1}.$$

Special structures, e.g. Toeplitz or Banded, makes A^{-1} easy to compute. Update formulas matrices that are "close" to a special structure cheaper to invert.

August 24, 2017 Sida 22/23

Example Suppose we have a decomposition PA = LU and want to solve $\widehat{A}x = b$, where A and \widehat{A} only differs on one row.

How to organize the computation? How much work is required?