TANA15/Lecture 4 - Contents

Definition and Basics

The Eigenvalue Decomposition

- Definitions and Basics.
- Localization of Eigenvalues. Sensitivity.

Applications: Roots of Polynomials. Functions of Matrices.

Computing Eigenvalues

- Rayleigh Quotient.
- The Power iteration. Inverse Iteration.

Definition If $A \in \mathbb{C}^{n \times n}$ has a full set of linearily independent eigenvectors so $X=\left(x_{1}, \ldots, x_{n}\right)$. Then

$$
A=X D X^{-1}
$$

is called the eigenvalue decomposition.

Remark In the above case A is called non-defective. In this case the matrix X provides a basis for \mathbb{R}^{n}.

Complex Matrices

Defitinion Let $x, y \in \mathbb{C}^{n}$. The scalar product is

$$
(x, y)=x^{H} y=\sum_{i=1}^{n} \bar{x}_{i} y_{i}
$$

and the Euclidean norm is

$$
\|x\|_{2}^{2}=x^{H} x=\sum_{i=1}^{n}\left|x_{i}\right|^{2}
$$

where x^{H} is the Hermitean transpose of x.

Remark The real case is a special case of the complex one.

Lemma If $A \in \mathbb{C}^{n \times n}$ is Hermitean, i.e. $A=A^{H}$, then its eigenvectors are unitary so $X^{-1}=X^{H}$ and $A=X D X^{H}$.

Corollary If A is real and symmetric, i.e. $A=A^{T}$, then its eigenvectors are orthogonal so $X^{-1}=X^{T}$ and $A=X D X^{T}$.

Remark Both Hermitean and Symmetric matrices have real eigenvalues. Anti-Hermitean, i.e. $A^{H}=-A$, have pure imaginary eigenvalues.

Definition If a matrix $X \in \mathbb{C}^{n \times n}$ satisfies $X^{H} X=I$ then $X=\left(x_{1}, \ldots, x_{n}\right)$ is unitary and its column vectors form an orthonormal basis for \mathbb{C}^{n}.

Lemma If Q is unitary then $\|Q x\|_{2}=\|x\|_{2}$.

Remark In the real case the matrix Q is orthogonal.

Lemma If (λ, x) is an eigenpair then $(A-\lambda I) x=0$, $x \neq 0$, and therefore the eigenvalues are the roots of

$$
p_{A}(\lambda)=\operatorname{det}(A-\lambda I)=0
$$

where $p_{A}(\lambda)$ is called the Characteristic polynomial of A.

Remark If A^{-1} exists so that $A x=b$ has a unique solution for every b. Then A is non-singular. This is equivalent to zero not beeing an eigenvalue of A.

Suppose $p_{A}(\lambda)$ is the characteristic polynomial of A. Since $p_{A}(\lambda)$ has n roots we may write

$$
p_{A}(\lambda)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \ldots\left(\lambda_{n}-\lambda\right)
$$

Definition The Algebraic multiplicity $\gamma_{1}(\lambda)$ of λ is its multiplicity as a root of $p_{A}(\lambda)$.

$$
\text { multiplicity as a root of } p_{A}(\lambda)
$$

Definition The Geometric multiplicity $\gamma_{2}(\lambda)$ is given by $\gamma_{2}(\lambda)=\operatorname{dim}(\operatorname{null}(A-\lambda I))$

Remark This is the number of linearly independent eigenvectors associated with λ.

Example

Lemma It holds that $1 \leq \gamma_{2}(\lambda) \leq \gamma_{1}(\lambda)$.

Definition If $\gamma_{1}(\lambda)=\gamma_{2}(\lambda)$ for all eigenvalues λ then A is non-defective.

Remark In this case we can diagonalize $A=X D X^{-1}$. For a defective eigenvalue we have $\gamma_{2}(\lambda)<\gamma_{1}(\lambda)$.

Consider the Jordan block

$$
J=\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

What are the eigenvalues? Algebraic and Geometric multiplicity?

Applications

Example Suppose A is non-defective and consider the first order system of ODEs,

$$
y^{\prime}(t)=A y(t), \quad t>0, y(0)=b
$$

The solution can be written

$$
y(t)=c_{1} x_{1} \mathrm{e}^{\lambda_{1} t}+c_{2} x_{2} \mathrm{e}^{\lambda_{2} t}+\cdots+c_{n} x_{n} \mathrm{e}^{\lambda_{n} t}, \quad \text { with, } \quad c=X^{-1} b
$$

Functions of Matrices

The Taylor series representation of the scalar function $f(t)$ is

$$
f(t)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} t^{k} .
$$

For any matrix $A \in \mathbb{R}^{n \times n}$ we define

$$
f(A)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} A^{k}
$$

Remark If the power series for $f(t)$ is absolute convergent for $|t|<L$ then the series $f(A)$ is absolute convergent for $\|A\|<L$.

Localization of Eigenvalues

Proposition If A is non-defective then

$$
f(A)=X f(D) X^{-1}
$$

where X is the eigenvector matrix, $D=\operatorname{diag}\left(\lambda_{i}\right)$ are the eigenvalues, and $f(D)=\operatorname{diag}\left(f\left(\lambda_{i}\right)\right)$.

Remarks The eigenvalue decomposition offers a cheap and stable way to compute $f(A)$.

Matlab has functions expm, cosm, etc. There is also a function funm.

Theorem (Gershgorin I) The eigenvalues of A are located in the union of the n discs.

$$
\left|\lambda-a_{i i}\right| \leq r_{i}=\sum_{j \neq i}\left|a_{i j}\right|, \quad i=1,2, \ldots, n .
$$

Remark Since $\lambda(A)$ and $\lambda\left(A^{T}\right)$ we can replace r_{i} by $c_{i}=\sum_{j \neq i}\left|a_{j i}\right|$.

Theorem (Gershgorin II) Every isolated subset of discs contains exactly as many eigenvalues as the number of discs.

Example Locate the eigenvalues of the matrix

$$
A=\left(\begin{array}{ccc}
3.3 & 0.4 & -0.7 \\
0.3 & 2.8 & 0.2 \\
0.2 & -0.3 & -4
\end{array}\right)
$$

as accurately as possible. Can you conclude that the eigenvalues are real?

Definition Let $A \in \mathbb{R}^{n \times n}$ and $u \in \mathbb{R}^{n}$ be a non-zero vector. The function

$$
\rho(u)=\frac{u^{T} A u}{u^{T} u}
$$

is called the Rayleigh quotient.
Remark The Rayleight qoutient is obtained by treating $A u=\rho u$ as a least squares problem. Thus if (x, λ) is an eigenpair of A then $\rho(x)=\lambda$.

The power method

Suppose A is real, non-defective, $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|$, and $\left\{x_{i}\right\}$ are the eigenvectors.

Algorithm Take $q^{(0)}$ such that $\left\|q^{(0)}\right\|_{2}=1$ and form for $k=1,2, \ldots$,

$$
\begin{aligned}
& w^{(k)}=A q^{(k-1)} \\
& \rho_{k-1}=\left(q^{(k-1)}\right)^{T} w^{(k)} \\
& q^{(k)}=w^{(k)} /\left\|w^{(k)}\right\|_{2}
\end{aligned}
$$

Then $\left(\rho_{k}, q^{(k)}\right)$ converge to the eigenpair $\left(\lambda_{1}, x_{1}\right)$.
Stopping rule If $A=A^{T}$ and $r=A q^{(k)}-\rho_{k} q^{(k)}$. Then $\|r\|_{2}<\varepsilon$ ensures that $\left|\lambda_{1}-\rho_{k}\right|<\varepsilon$.

Proposition The power method computes estimates

$$
\begin{aligned}
& \left(\rho_{k}, q^{(k)}\right) \text { of }\left(\lambda_{1}, x_{1}\right) \text { that satisfy } \\
& q^{(k)}= \pm x_{1}+O\left(\gamma^{k}\right), \quad \text { and, } \quad \rho_{k}=\lambda_{1}+O\left(\gamma^{k_{1}}\right)
\end{aligned}
$$

where $\gamma=\left|\lambda_{2}\right| /\left|\lambda_{1}\right|$ and $k_{1}=2 k$ if A is symmetric and $k_{1}=k$ otherwise.

Remark The speed of convergence depend on the quotient $\gamma=\left|\lambda_{2} / \lambda_{1}\right|$. The factor γ can be improved by linear transformations.

$$
\text { Lemma Suppose } B=A-s I \text {. Then } \lambda(B)=\lambda(A)-s
$$

Example Suppose

```
>> A=[ 3 4 1 ; 4 5 -1 ; 1 -1 6]
```

The eigenvalues and eigenvectors are

$\mathrm{X}=$			D $=$		
-0.7674	0.2242	-0.6007	-0.4297	0	0
0.6046	-0.0587	-0.7943	0	6.2909	0
0.2134	0.9728	0.0905	0	0	8.1388

Inverse iteration

Proposition Let (λ, x) be an eigenpair of A. Put

 $B=(A-s I)^{-1}$. Then (μ, x), with $\mu=1 /(\lambda-s)$, is an eigenpair of B.Example If A has eigenvalues $\lambda_{1}=-0.4297, \lambda_{2}=6.2909$, and $\lambda_{3}=8.1388$. Then with $s=8$ we get,

$$
\gamma=\left|\frac{\lambda_{2}-s}{\lambda_{3}-s}\right|=\left|\frac{8.1388-8}{6.2909-8}\right| \approx 0.0812
$$

Much faster convergence than the power method ($\gamma=\left|\lambda_{2} / \lambda_{3}\right|=0.7729$)

Example Power iteration results.

The errors $\left\|\bar{x}^{(k)}-x_{3}\right\|_{2}$ (blue) and $\left|\rho_{k}-\lambda_{3}\right|$ (black). A is symmetric and $\gamma=\left|\lambda_{2} / \lambda_{3}\right|=0.7729$. This is slow converence.

Example Inverse iteration results with $s=8$.

The errors $\left\|\bar{x}^{(k)}-x_{3}\right\|_{2}$ (blue) and $\left|\rho_{k}-\lambda_{3}\right|$ (black). This is fast converence.

Lemma Let (x, λ) be an eigenpair of a symmetric matrix A, and \bar{x} an approximation of x. If $\|x-\bar{x}\|_{2}=O(\varepsilon)$ then $|\lambda-\rho(\bar{x})|=O\left(\varepsilon^{2}\right)$.

Lemma If A is symmetric then $B=(A-s I)^{-1}$ is also symmetric.

Remark This means the faster convergence.

Lemma If λ is an eigenvalue then $A-\lambda I$ is singular. We can compute the eigenvector by, e.g., setting $x_{1}=1$, and solving $A x=\lambda x$.

Remark This means that we only need to compute eigenvalues. Eigenvectors can easily be obtained.

Question How to find more efficient methods for computing eigenvalues.

