The Eigenvalue Decomposition

- Definitions and Basics.
- Localization of Eigenvalues. Sensitivity.
- Applications: Roots of Polynomials. Functions of Matrices.

Computing Eigenvalues

- Rayleigh Quotient.
- The Power iteration. Inverse Iteration.

Definition Let $A \in \mathbb{C}^{n \times n}$. If there is a scalar $\lambda \in \mathbb{C}$ and a vector $x \neq 0$ in \mathbb{C}^n such that

 $Ax = \lambda x$

then λ is an *eigenvalue* and x is an *eigenvector*.

Remark Real matrices can have complex eigenvalues. It is easier to treat the complex case.

Lemma If λ is an eigenvalue then $A - \lambda I$ is *singular*. This means that $\text{Null}(A - \lambda I) \neq \{0\}$.

August 9, 2017 Sida 2/26

August 9, 2017 Sida 1/26

Remark Eigenvectors are never unique. If x is an eigenvector so is αx . Only the subspaces Null $(A - \lambda I)$ are unique.

Definition Let $X = (x_1, x_2, ..., x_k)$ be all the linearily independent eigenvectors associated with *A* and $D = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_k)$. Then AX = XD.

Definition If $A \in \mathbb{C}^{n \times n}$ has a full set of linearily independent eigenvectors so $X = (x_1, \dots, x_n)$. Then

 $A = XDX^{-1}$

is called the *eigenvalue decomposition*.

Remark In the above case *A* is called *non-defective*. In this case the matrix *X* provides a *basis* for \mathbb{R}^n .

Defitinion Let $x, y \in \mathbb{C}^n$. The scalar product is

$$(x,y) = x^H y = \sum_{i=1}^n \bar{x}_i y_i,$$

and the Euclidean norm is

$$||x||_2^2 = x^H x = \sum_{i=1}^n |x_i|^2,$$

where x^H is the Hermitean transpose of *x*.

Remark The real case is a special case of the complex one.

August 9, 2017 Sida 5/26

Definition If a matrix $X \in \mathbb{C}^{n \times n}$ satisfies $X^H X = I$ then $X = (x_1, \ldots, x_n)$ is *unitary* and its column vectors form an orthonormal basis for \mathbb{C}^n .

Lemma If *Q* is *unitary* then $||Qx||_2 = ||x||_2$.

Remark In the real case the matrix *Q* is *orthogonal*.

August 9, 2017 Sida 6/26

Lemma If $A \in \mathbb{C}^{n \times n}$ is *Hermitean*, i.e. $A = A^H$, then its eigenvectors are *unitary* so $X^{-1} = X^H$ and $A = XDX^H$.

Corollary If *A* is real and symmetric, i.e. $A = A^T$, then its eigenvectors are *orthogonal* so $X^{-1} = X^T$ and $A = XDX^T$.

Remark Both Hermitean and Symmetric matrices have *real* eigenvalues. Anti-Hermitean, i.e. $A^H = -A$, have *pure imaginary* eigenvalues.

Lemma If (λ, x) is an eigenpair then $(A - \lambda I)x = 0$, $x \neq 0$, and therefore the eigenvalues are the roots of

 $p_A(\lambda) = \det(A - \lambda I) = 0,$

where $p_A(\lambda)$ is called the *Characteristic polynomial* of *A*.

Remark If A^{-1} exists so that Ax = b has a unique solution for every *b*. Then *A* is *non-singular*. This is equivalent to zero not beeing an eigenvalue of *A*.

Suppose $p_A(\lambda)$ is the characteristic polynomial of *A*. Since $p_A(\lambda)$ has *n* roots we may write

$$p_A(\lambda) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \dots (\lambda_n - \lambda).$$

Definition The Algebraic multiplicity $\gamma_1(\lambda)$ of λ is its multiplicity as a root of $p_A(\lambda)$.

Definition The *Geometric multiplicity* $\gamma_2(\lambda)$ is given by $\gamma_2(\lambda) = \dim(\operatorname{null}(A - \lambda I))$

Remark This is the number of linearly independent eigenvectors associated with λ .

August 9, 2017 Sida 9/26

Lemma It holds that $1 \leq \gamma_2(\lambda) \leq \gamma_1(\lambda)$.

Definition If $\gamma_1(\lambda) = \gamma_2(\lambda)$ for all eigenvalues λ then *A* is *non–defective*.

Remark In this case we can diagonalize $A = XDX^{-1}$. For a *defective eigenvalue* we have $\gamma_2(\lambda) < \gamma_1(\lambda)$.

Example

Consider the Jordan block

 $J = \left(\begin{array}{rrr} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{array} \right).$

What are the eigenvalues? Algebraic and Geometric multiplicity?

August 9, 2017 Sida 10/26

Applications

Example Suppose *A* is non–defective and consider the first order system of ODEs,

$$y'(t) = Ay(t), \quad t > 0, y(0) = b.$$

The solution can be written

$$y(t) = c_1 x_1 e^{\lambda_1 t} + c_2 x_2 e^{\lambda_2 t} + \dots + c_n x_n e^{\lambda_n t}$$
, with, $c = X^{-1} b$.

The Taylor series representation of the *scalar* function f(t) is

$$f(t) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} t^{k}.$$

For any matrix $A \in \mathbb{R}^{n \times n}$ we define

$$f(A) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} A^k.$$

Remark If the power series for f(t) is absolute convergent for |t| < L then the series f(A) is absolute convergent for ||A|| < L.

August 9, 2017 Sida 14/26

August 9, 2017 Sida 13/26

Proposition If *A* is non–defective then

$$f(A) = Xf(D)X^{-1}$$

Example Roots of the polynomial $p(x) = x^3 + c_2x^2 + c_1x + c_0$ are

 $\left(\begin{array}{ccc} -c_2 & -c_1 & -c_0 \\ 1 & & \\ & 1 & \end{array}\right).$

Remark The matlab code roots is based on the companion matrix.

the eigenvalues of the *companion matrix*

where *X* is the eigenvector matrix, $D = \text{diag}(\lambda_i)$ are the eigenvalues, and $f(D) = \text{diag}(f(\lambda_i))$.

Remarks The eigenvalue decomposition offers a cheap and stable way to compute f(A).

Matlab has functions expm, cosm, etc. There is also a function funm.

Localization of Eigenvalues

Theorem (Gershgorin I) The eigenvalues of *A* are located in the union of the *n* discs.

$$|\lambda - a_{ii}| \leq r_i = \sum_{j \neq i} |a_{ij}|, \qquad i = 1, 2, \dots, n.$$

Remark Since $\lambda(A)$ and $\lambda(A^T)$ we can replace r_i by $c_i = \sum_{i \neq i} |a_{ji}|$.

Theorem (Gershgorin II) Every isolated subset of discs contains exactly as many eigenvalues as the number of discs.

Example Locate the eigenvalues of the matrix

$$A = \left(\begin{array}{rrrr} 3.3 & 0.4 & -0.7 \\ 0.3 & 2.8 & 0.2 \\ 0.2 & -0.3 & -4 \end{array}\right)$$

as accurately as possible. Can you conclude that the eigenvalues are real?

Definition Let $A \in \mathbb{R}^{n \times n}$ and $u \in \mathbb{R}^n$ be a non–zero vector. The function

$$\rho(u) = \frac{u^T A u}{u^T u}$$

is called the Rayleigh quotient.

Remark The Rayleight qoutient is obtained by treating $Au = \rho u$ as a least squares problem. Thus if (x, λ) is an eigenpair of A then $\rho(x) = \lambda$.

August 9, 2017 Sida 18/26

The power method

Suppose *A* is real, non–defective, $|\lambda_1| > |\lambda_2| \ge ... \ge |\lambda_n|$, and $\{x_i\}$ are the eigenvectors.

Algorithm Take $q^{(0)}$ such that $||q^{(0)}||_2 = 1$ and form for k = 1, 2, ..., $w^{(k)} = Aq^{(k-1)},$ $\rho_{k-1} = (q^{(k-1)})^T w^{(k)},$ $q^{(k)} = w^{(k)} / ||w^{(k)}||_2.$

Then $(\rho_k, q^{(k)})$ converge to the eigenpair (λ_1, x_1) .

Stopping rule If $A = A^T$ and $r = Aq^{(k)} - \rho_k q^{(k)}$. Then $||r||_2 < \varepsilon$ ensures that $|\lambda_1 - \rho_k| < \varepsilon$.

Proposition The power method computes estimates $(\rho_k, q^{(k)})$ of (λ_1, x_1) that satisfy $q^{(k)} = \pm x_1 + O(\gamma^k)$, and, $\rho_k = \lambda_1 + O(\gamma^{k_1})$, where $\gamma = |\lambda_2|/|\lambda_1|$ and $k_1 = 2k$ if A is symmetric and $k_1 = k$ otherwise.

Remark The speed of convergence depend on the *quotient* $\gamma = |\lambda_2/\lambda_1|$. The factor γ can be improved by linear transformations.

Lemma Suppose B = A - sI. Then $\lambda(B) = \lambda(A) - s$.

August 9, 2017 Sida 17/26

Example Suppose

>> A=[3 4 1 ; 4 5 -1 ; 1 -1 6]

The eigenvalues and eigenvectors are

=eig(A)				
		D =		
0.2242	-0.6007	-0.4297	0	0
-0.0587	-0.7943	0	6.2909	0
0.9728	0.0905	0	0	8.1388
	=eig(A) 0.2242 -0.0587 0.9728	=eig(A) 0.2242 -0.6007 -0.0587 -0.7943 0.9728 0.0905	=eig(A) D = 0.2242 -0.6007 -0.4297 -0.0587 -0.7943 0 0.9728 0.0905 0	=eig(A) D = 0.2242 -0.6007 -0.4297 0 -0.0587 -0.7943 0 6.2909 0.9728 0.0905 0 0

Example Power iteration results.

The errors $\|\bar{x}^{(k)} - x_3\|_2$ (blue) and $|\rho_k - \lambda_3|$ (black). A is symmetric and $\gamma = |\lambda_2/\lambda_3| = 0.7729$. This is *slow* converge.

August 9, 2017 Sida 22/26

August 9, 2017 Sida 21/26

Inverse iteration

Proposition Let (λ, x) be an eigenpair of *A*. Put $B = (A - sI)^{-1}$. Then (μ, x) , with $\mu = 1/(\lambda - s)$, is an eigenpair of *B*.

Example If A has eigenvalues $\lambda_1 = -0.4297$, $\lambda_2 = 6.2909$, and $\lambda_3 = 8.1388$. Then with s = 8 we get,

$$\gamma = |\frac{\lambda_2 - s}{\lambda_3 - s}| = |\frac{8.1388 - 8}{6.2909 - 8}| \approx 0.0812$$

Much faster convergence than the power method $(\gamma = |\lambda_2/\lambda_3| = 0.7729).$

Example Inverse iteration results with s = 8.

The errors $\|\bar{x}^{(k)} - x_3\|_2$ (blue) and $|\rho_k - \lambda_3|$ (black). This is *fast* convergence.

Lemma Let (x, λ) be an eigenpair of a symmetric matrix *A*, and \bar{x} an approximation of *x*. If $||x - \bar{x}||_2 = O(\varepsilon)$ then $|\lambda - \rho(\bar{x})| = O(\varepsilon^2)$.

Lemma If *A* is symmetric then $B = (A - sI)^{-1}$ is also symmetric.

Remark This means the faster convergence.

Lemma If λ is an eigenvalue then $A - \lambda I$ is *singular*. We can compute the eigenvector by, e.g., setting $x_1 = 1$, and solving $Ax = \lambda x$.

Remark This means that we only need to compute eigenvalues. Eigenvectors can easily be obtained.

Question How to find more efficient methods for computing eigenvalues.

August 9, 2017 Sida 25/26

August 9, 2017 Sida 26/26