Computing Eigenvalues

- Decoupling, Similarity Transformations, The Schur

Decomposition.

- Hessenberg Decomposition. The QR Algorithm. Shifts.

Applications

- Google PageRank.

Sensitivity

Let $A \in \mathbb{C}^{n \times n}$ be non-defective and let $(\hat{x}, \hat{\lambda})$ be an approximate eigenpair of A, with $\|\hat{x}\|_{2}=1$, and put $r=A \hat{x}-\hat{\lambda} \hat{x}$.

Proposition There is an eigenvalue λ of A such that

$$
|\lambda-\hat{\lambda}| \leq \kappa_{2}(X)\|r\|_{2}
$$

Corollary If A is Symmetric or Hermitean then

$$
|\lambda-\hat{\lambda}| \leq\|r\|_{2}
$$

The residual is

Since the matrix is symmetric $\kappa_{2}(X)=1$ and

Definition If $A=X B X^{-1}$ then we say that A and B are similar and X is called a similarity transformation.

Lemma If A and B are similar then $\lambda(A)=\lambda(B)$.

Remark A similarity transformation preserves eigenvalues. Specific matrices to use includes Gauss transformations, Householder recleftions and Givens rotations.

Example Let $(\hat{\lambda}, \hat{x})=\left(1,(0,0,1)^{T}\right)$ and consider the matrix

$$
A=\left(\begin{array}{lll}
3 & 2 & 0 \\
2 & 4 & \varepsilon \\
0 & \varepsilon & 1
\end{array}\right)
$$

$$
r=A \hat{x}-\hat{\lambda} \hat{x}=\left(\begin{array}{l}
0 \\
\varepsilon \\
1
\end{array}\right)-1 \cdot\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
\varepsilon \\
0
\end{array}\right)
$$

$$
\left|\lambda_{3}-1\right| \leq \kappa_{2}(X)\|r\|_{2}=|\varepsilon|
$$

Remark A small change to $a_{i j}$ leads to a small change in the eigenvalues λ_{k}.

The Decoupling theorem

Theorem Suppose A has a block-structure

$$
A=\left(\begin{array}{cc}
A_{1} & B \\
0 & A_{2}
\end{array}\right)
$$

then $\lambda(A)=\lambda\left(A_{1}\right) \cup \lambda\left(A_{2}\right)$.

Corollary If T is an upper triangular matrix then its eigenvalues are the diagonal elements, i.e. $\lambda_{i}=T_{i i}$.

Remark If $\hat{\lambda}_{i}$ is an eigenvalue then we get the corresponding eigenvector \hat{x}_{i} efficiently by inverse iteration.

The Schur decomposition

Theorem Every matrix $A \in \mathbb{R}^{n \times n}$ has a Schur decomposition, i.e.

$$
A=Q T Q^{H}
$$

where T is upper triangular and Q is unitary.

Corollary If A is Hermitean then T is diagonal and Q the eigenvector matrix.

Remarks Neither T or Q are unique. The eigenvalues of a matrix A can be computed by using only reflections or rotations.

Algorithm Let $A^{(0)}=A$. Generate a sequence of similar matrices,

$$
A^{(k+1)}=X_{k} A^{(k)} X_{k}^{-1}, \quad k=1,2, \ldots
$$

such that

$$
\lim _{k \rightarrow \infty} A^{(k)}=T, \quad \text { or } \quad \lim _{k \rightarrow \infty} A^{(k)}=D
$$

where T is upper triangular and D is diagonal.

Question What types of similarity transformations are needed? Not every matrix can be written $A=X D X^{T}$, with X orthogonal.

The $Q R$ algorithm

$$
\begin{aligned}
& \text { Algorithm Put } A_{0}=A \text { and do } \\
& \qquad A_{k}=Q_{k} R_{k} \text {, and } A_{k+1}=R_{k} Q_{k}, \text { for } k=1,2, \ldots
\end{aligned}
$$

In each step compute the $Q R$ decomposition of A_{k} and multiply the factors in reverse order. Need $\mathcal{O}\left(n^{3}\right)$ operations/step.

$$
\text { Proposition The sequence of matrices }\left\{A_{k}\right\} \text { are similar. }
$$

Remark If the algorithm converges to an upper triangular matrix then we have the eigenvalues of A.

Proposition It holds that

$$
A_{k+1}=S_{k}^{H} A S_{k}, \quad S_{k}=Q_{0} Q_{1} \cdots Q_{k}
$$

Also S_{k-1} provides an orthonormal basis for Range $\left(A^{k}\right)$.

Theorem Suppose $A=A^{T}$ and $\left|\lambda_{1}\right|>\ldots>\left|\lambda_{n}\right|$. Then

$$
A_{k} \rightarrow D=\operatorname{diag}\left(\lambda_{i}\right) \text { as } k \rightarrow \infty
$$

Remark The proof is very similar to the convergence proof for the power method. In the non symmetric case $A_{k} \rightarrow T$, where T is upper triangular.

The Hessenberg Decomposition

Definition A matrix H is Hessenberg if $H_{i j}=0$ for $i>j+1$.

Proposition Every matrix $A \in \mathbb{R}^{n \times n}$ can be written as $A=Q H Q^{H}$, where H is Hessenberg and Q is orthogonal.

Remarks If A is Hermitean or Symmetric then the corresponding Hessenberg matrix is tridiagonal.

In Matlab H=hess (A) ;

Example Suppose A is a 5×5 matrix. First select a Householder reflection such that $H_{1} A(2: 5,1)=\alpha e_{1}$. Then,
$\tilde{H}_{1} A \tilde{H}_{1}^{T}=\left(\begin{array}{lllll}x & x & x & x & x \\ + & + & + & + & + \\ 0 & + & + & + & + \\ 0 & + & + & + & + \\ 0 & + & + & + & +\end{array}\right) \tilde{H}_{1}^{T}=\left(\begin{array}{lllll}x & + & + & + & + \\ x & + & + & + & + \\ 0 & + & + & + & + \\ 0 & + & + & + & + \\ 0 & + & + & + & +\end{array}\right)=A_{2}$.

Next select a reflection such that $H_{2} A_{2}(3: 5,2)=\alpha e_{1}$. Then
$\tilde{H}_{2} A_{2} \tilde{H}_{2}^{T}=\left(\begin{array}{ccccc}x & x & x & x & x \\ x & x & x & x & x \\ 0 & + & + & + & + \\ 0 & 0 & + & + & + \\ 0 & 0 & + & + & +\end{array}\right) \tilde{H}_{2}^{T}=\left(\begin{array}{lllll}x & x & + & + & + \\ x & x & + & + & + \\ 0 & x & + & + & + \\ 0 & 0 & + & + & + \\ 0 & 0 & + & + & +\end{array}\right)=A_{3}$.

Hessenberg/QR step

The decomposition $A_{k}=Q_{k} R_{k}$ is computed using $n-1$ Givens Rotations.

$$
\begin{aligned}
G_{34} G_{23} G_{12}\left(\begin{array}{cccc}
x & x & x & x \\
x & x & x & x \\
0 & x & x & x \\
0 & 0 & x & x
\end{array}\right) & =G_{34} G_{23}\left(\begin{array}{cccc}
+ & + & + & + \\
0 & + & + & + \\
0 & x & x & x \\
0 & 0 & x & x
\end{array}\right)= \\
G_{34}\left(\begin{array}{cccc}
x & x & x & x \\
0 & + & + & + \\
0 & 0 & + & + \\
0 & 0 & x & x
\end{array}\right) & =\left(\begin{array}{cccc}
x & x & x & x \\
0 & x & x & x \\
0 & 0 & + & + \\
0 & 0 & 0 & +
\end{array}\right)=R_{k} .
\end{aligned}
$$

We have computed $A_{k}=Q_{k} R_{k}$ with $Q_{k}^{T}=G_{34} G_{23} G_{12}$.

For the final step select a Householder reflection such that $H_{3} A_{3}(4: 5,3)=\alpha e_{1}$. Then,
$\tilde{H}_{3} A_{3} \tilde{H}_{3}^{T}=\left(\begin{array}{ccccc}x & x & x & x & x \\ x & x & x & x & x \\ 0 & x & x & x & x \\ 0 & 0 & + & + & + \\ 0 & 0 & 0 & + & +\end{array}\right) \tilde{H}_{3}^{T}=\left(\begin{array}{lllll}x & x & x & + & + \\ x & x & x & + & + \\ 0 & x & x & + & + \\ 0 & 0 & x & + & + \\ 0 & 0 & 0 & + & +\end{array}\right)=A_{4}$.

Remarks Need $n-2$ reflections. Don't need $Q=\tilde{H}_{3} \tilde{H}_{2} \tilde{H}_{1}$.

If A is Symmetric/Hermitean then the Hessenberg form is tridiagonal.

Multiply $A_{k+1}=R_{k} Q_{k}=R_{k} G_{12}^{T} G_{23}^{T} G_{34}^{T}$. We obtain

$$
\begin{aligned}
& \left(\begin{array}{cccc}
x & x & x & x \\
0 & x & x & x \\
0 & 0 & x & x \\
0 & 0 & 0 & x
\end{array}\right) G_{12}^{T} G_{23}^{T} G_{34}^{T}=\left(\begin{array}{cccc}
+ & + & x & x \\
+ & + & x & x \\
0 & 0 & x & x \\
0 & 0 & 0 & x
\end{array}\right) G_{23}^{T} G_{34}^{T}= \\
& \left(\begin{array}{llll}
x & + & + & x \\
x & + & + & x \\
0 & + & + & x \\
0 & 0 & 0 & x
\end{array}\right) G_{34}^{T}=\left(\begin{array}{cccc}
x & x & + & + \\
x & x & + & + \\
0 & x & + & + \\
0 & 0 & + & +
\end{array}\right)=A_{k+1} .
\end{aligned}
$$

Note that $A_{k+1}=R_{k} Q_{k}$ is Hessenberg. Need 2($\left.n-1\right)$ Givens rotations. Don't need to keep the rotations G_{12}, G_{23} and G_{34}.

The $Q R$ Algorithm

Algorithm Compute one eigenvalue by

1. Hessenberg reduction $A:=\operatorname{Hess}(A)$.
2. Save elements $E:=A(1: 2,1)$.
3. while $|A(n-1, n)|<$ tol
for $j=1: n-1$
Create Rotation $G_{j, j+1}$ using E.
Rotate rows $A:=G_{j, j+1} A$
Save elements $E:=A(j+1: j+2, j+1)$.
Rotate columns $A:=A G_{j, j+1}^{T}$.
end
end
Theorem There is no explicit formula for the solution of polynomial equations of degree five or higher.

This is called the Abel-Ruffini theorem.

Remark If there were an explicit formula for eigenvalues we could use the companion matrix to get an explicit formula for polynomials.

Question What happens if eigenvalues are complex? Algorithms for computing eigenvalues are iterative. Why?

Shifted $Q R$ algorithm

The convergence can be increased by using shifts

$$
A_{k}-s_{k} I=Q_{k} R_{k}, \quad A_{k+1}=R_{k} Q_{k}+s_{k} I
$$

Lemma It holds that $A_{k+1}=Q_{k}^{H} A_{k} Q_{k}$ so A_{k} and A_{k+1} are similar.

Remark The element $\left(A_{k}\right)_{i, i-1}$ tends to zero with a rate equal to

$$
\gamma=\left|\frac{\lambda_{i}-s_{k}}{\lambda_{i-1}-s_{k}}\right| .
$$

Hence if $\lambda_{i} \approx s_{k}$ we get very fast convergence.

Shift selection strategies

Single shift Select $s_{k}=\left(A_{k}\right)_{n, n}$.

Example We select a Hessenberg matrix A and perform a few $Q R$ steps. In Matlab

The matrix A_{1} is Hessenberg and the new shift $s_{1}=5.25$.

We perform a few more $Q R$ steps to obtain

$A 4=$| | | | |
| ---: | ---: | ---: | ---: |
| 1.4007 | -0.3106 | 0.2598 | 0.6786 |
| 0.1916 | 2.7684 | -0.2204 | 1.0612 |
| 0 | 0.1136 | 3.8583 | 0.9829 |
| 0 | 0 | -0.0081 | 5.9727 |

Remark Fast convergence since $\left|\left(A_{3}\right)_{4,3} /\left(A_{4}\right)_{4,3}\right| \approx 29.2$.

After $20 Q R$ steps we obtain

$A 20=$			
-3.0327	-5.6708	-3.3364	-4.2027
1.8228	-3.8883	-0.5321	0.8355
0	0.0000	2.2067	5.4178
0	0	-0.9909	4.7143

Observation The lower 2×2 block has the eigenvalues
$\lambda_{3,4}=3.46 \pm 1.94 i$. We never introduce complex numbers in the computations.

Can still use decoupling. There is an analytic formula for the 2×2 case.

Double shift Select s_{k} as an eigenvalue of the block
$\left(A_{k}\right)(n-1: n, n-1: n)$. In Matlab

```
for k=1:5
    s=max(eig(A(3:4,3:4)));
    [Q,R]=qr (A-s*eye (4));
    A=R*Q+s*eye(4);
end
```

The second shift is $s_{2}=3.2644+2.1334 i$. Complex numbers are introduced.

After $5 Q R$ steps with complex shifts we obtain

```
A5 =
-3.75-1.01i -5.55-0.38i 2.62+3.22i -0.10+3.04i
    1.66+0.00i -3.16+1.00i -0.28-0.51i 0.76-1.44i
    0.00+0.00i -0.05+0.00i 3.46-1.94i 3.15+3.99i
    0.00+0.00i 0.00+0.00i 0.00+0.00i 3.46+1.94i
```

Remark If A is real complex numbers should be avoided. Use decoupling on 2×2 blocks instead.

The Practical $Q R$ algorithm

A practical implementation includes the steps

- Hessenberg Reduction $A:=\operatorname{Hess}(A)$.
- Select a shift s_{k} using a strategy.
- The $Q R$ step is implemented using Givens rotations.
- If any $|A(j+1, j)|<$ tol then use decoupling:

$$
A:=\left(\begin{array}{cc}
A_{1} & B \\
0 & A_{2}
\end{array}\right)
$$

- If we find a 2×2 block. Use the analytic formula.
- Computed eigenvectors using Inverse iteration.

Remark The Matlab function eig implements this. Its difficult to set tolerances.

Application: Google Page Rank

Google ranks about $45 \cdot 10^{9}$ webb pages (2011). The ability to identify high quality webb pages is a large part of Googles success.

- The ranking is based on the link structure of the internet and has to be recomputed often.
- A Web Crawler downloads webb pages, collects keywoards for indexing, and finds links to, and from, webb pages.
- All webb pages relevant to a certain search phrase are retrived. They are displayed in the order given by the their PageRank.

Each webb page is assigned an index $i=1, \ldots, N$.
The PageRank $\left.r_{i} \in[0,1]\right)$ is a quality measure for webb pages. It is based on the set of inlinks I_{i} and outlinks O_{i}.

Idea Good webb pages get links from many other good webpages.

Definition If page j lacks outlinks then change the corresponding column to

$$
A(:, j)=e / N, \quad e=(1,1, \ldots, 1)^{T} .
$$

Lemma The largest eigenvalue of the modified Google transition matrix is $\lambda_{\max }=1$ and the corresponding eigenvector r has elements $0 \leq r_{i} \leq 1$.

Remarks We need one eigenvector of a matrix A of dimension $N=45 \cdot 10^{9}$. The only realistic choice is the Power Method.

Definition The Google PageRank is r_{i} for webb page i satisfies,

$$
r_{i}=\sum_{j \in I_{i}} \frac{r_{j}}{N_{j}}
$$

Remarks This means that the rank of a page j is divided equally between the its outlinks. This is a matrix equation

$$
r=A r, \quad A_{i, j}= \begin{cases}1 / N_{j}, & \text { if page } j \text { links to page } i \\ 0, & \text { otherwise }\end{cases}
$$

Note If page j has at least one outlink then the corresponding column $A(:, j)$ sums to $1 . A$ is the Transition matrix.

