Computing Eigenvalues

- Decoupling, Similarity Transformations, The Schur Decomposition.
- Hessenberg Decomposition. The QR Algorithm. Shifts.

Applications

• Google PageRank.

Definition If $A = XBX^{-1}$ then we say that A and B are *similar* and X is called a *similarity transformation*.

Lemma If *A* and *B* are *similar* then $\lambda(A) = \lambda(B)$.

Remark A *similarity transformation* preserves eigenvalues. Specific matrices to use includes Gauss transformations, Householder recleftions and Givens rotations.

August 9, 2017 Sida 1/31

August 9, 2017 Sida 2/31

Sensitivity

Let $A \in \mathbb{C}^{n \times n}$ be non–defective and let $(\hat{x}, \hat{\lambda})$ be an *approximate* eigenpair of A, with $\|\hat{x}\|_2 = 1$, and put $r = A\hat{x} - \hat{\lambda}\hat{x}$.

Proposition There is an eigenvalue λ of A such that $|\lambda - \hat{\lambda}| \le \kappa_2(X) ||r||_2.$

Corollary If A is Symmetric or Hermitean then $|\lambda - \hat{\lambda}| \leq \|r\|_2.$

Remark This is often called the Bauer-Fike Theorem.

Example Let $(\hat{\lambda}, \hat{x}) = (1, (0, 0, 1)^T)$ and consider the matrix $A = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 4 & \varepsilon \\ 0 & \varepsilon & 1 \end{pmatrix},$

The residual is

$$r = A\hat{x} - \hat{\lambda}\hat{x} = \begin{pmatrix} 0\\ \varepsilon\\ 1 \end{pmatrix} - 1 \cdot \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} = \begin{pmatrix} 0\\ \varepsilon\\ 0 \end{pmatrix}.$$

Since the matrix is symmetric $\kappa_2(X) = 1$ and

$$|\lambda_3 - 1| \le \kappa_2(X) ||r||_2 = |\varepsilon|.$$

Remark A small change to a_{ij} leads to a small change in the eigenvalues λ_k .

Theorem Suppose *A* has a block-structure $A = \begin{pmatrix} A_1 & B \\ 0 & A_2 \end{pmatrix},$ then $\lambda(A) = \lambda(A_1) \cup \lambda(A_2).$

Corollary If *T* is an *upper triangular* matrix then its eigenvalues are the diagonal elements, i.e. $\lambda_i = T_{ii}$.

Remark If $\hat{\lambda}_i$ is an eigenvalue then we get the corresponding eigenvector \hat{x}_i efficiently by *inverse iteration*.

August 9, 2017 Sida 5/31

The Schur decomposition

Theorem Every matrix $A \in \mathbb{R}^{n \times n}$ has a *Schur decomposition*, i.e.

 $A = QTQ^H,$

where T is upper triangular and Q is unitary.

Corollary If A is *Hermitean* then T is *diagonal* and Q the eigenvector matrix.

Remarks Neither T or Q are unique. The eigenvalues of a matrix A can be computed by using only *reflections* or *rotations*.

Algorithm Let $A^{(0)} = A$. Generate a sequence of similar matrices, $A^{(k+1)} = X_k A^{(k)} X_k^{-1}, \qquad k = 1, 2, ...$ such that $\lim_{k \to \infty} A^{(k)} = T, \qquad \text{or} \qquad \lim_{k \to \infty} A^{(k)} = D,$ where *T* is upper triangular and *D* is diagonal.

Question What types of similarity transformations are needed? Not

every matrix can be written $A = XDX^T$, with X orthogonal.

August 9, 2017 Sida 6/31

The *QR* algorithm

Algorithm Put $A_0 = A$ and do

$$A_k = Q_k R_k$$
, and $A_{k+1} = R_k Q_k$, for $k = 1, 2, ...$

In each step compute the *QR* decomposition of A_k and multiply the factors in reverse order. Need $O(n^3)$ operations/step.

Proposition The sequence of matrices $\{A_k\}$ are *similar*.

Remark *If* the algorithm converges to an upper triangular matrix then we have the eigenvalues of *A*.

Proposition It holds that

 $A_{k+1} = S_k^H A S_k, \quad S_k = Q_0 Q_1 \cdots Q_k.$

Also S_{k-1} provides an orthonormal basis for Range (A^k) .

Theorem Suppose $A = A^T$ and $|\lambda_1| > \ldots > |\lambda_n|$. Then

 $A_k \to D = \operatorname{diag}(\lambda_i) \text{ as } k \to \infty.$

Remark The proof is very similar to the convergence proof for the power method. In the non symmetric case $A_k \rightarrow T$, where *T* is upper triangular.

August 9, 2017 Sida 9/31

Observation Computing the QR decomposition of a full matrix A_k is very expensive. For a practically viable algorithm we need to reduce the computational work.

Question How to find a similarity transformation *X* so that it is easy to compute the *QR* decomposition of $B = XAX^{-1}$?

Example Perform k = 100 QR steps. In Matlab

>> A=[3 4 1 ; 4 5 -1 ; 1 -1 6]; >> Ak=A; >> for k=1:100, [Q,R]=qr(Ak); Ak=R*Q;,end;

Ak	=		
	8.1388	0.0000	-0.0000
	0.0000	6.2909	0.0000
	0.0000	-0.0000	-0.4297

The computed eigenvalues have 15 correct digits. Note that the eigenvectors are not saved during the QR process.

August 9, 2017 Sida 10/31

The Hessenberg Decomposition

Definition A matrix *H* is *Hessenberg* if $H_{ij} = 0$ for i > j+1.

Proposition Every matrix $A \in \mathbb{R}^{n \times n}$ can be written as $A = QHQ^H$, where *H* is Hessenberg and *Q* is orthogonal.

Remarks If *A* is Hermitean or Symmetric then the corresponding Hessenberg matrix is tridiagonal.

In Matlab H=hess(A);

Example Suppose *A* is a 5×5 matrix. First select a Householder reflection such that $H_1A(2:5,1) = \alpha e_1$. Then,

$$\tilde{H}_{1}A\tilde{H}_{1}^{T} = \begin{pmatrix} x & x & x & x & x \\ + & + & + & + & + \\ 0 & + & + & + & + \\ 0 & + & + & + & + \end{pmatrix} \tilde{H}_{1}^{T} = \begin{pmatrix} x & + & + & + & + \\ x & + & + & + & + \\ 0 & + & + & + & + \\ 0 & + & + & + & + \end{pmatrix} = A_{2}.$$

Next select a reflection such that $H_2A_2(3:5,2) = \alpha e_1$. Then

$$\tilde{H}_{2}A_{2}\tilde{H}_{2}^{T} = \begin{pmatrix} x & x & x & x \\ x & x & x & x & x \\ 0 & + & + & + & + \\ 0 & 0 & + & + & + \\ 0 & 0 & + & + & + \end{pmatrix} \tilde{H}_{2}^{T} = \begin{pmatrix} x & x & + & + & + \\ x & x & + & + & + \\ 0 & x & + & + & + \\ 0 & 0 & + & + & + \\ 0 & 0 & + & + & + \end{pmatrix} = A_{3}.$$

August 9, 2017 Sida 13/31

For the final step select a Householder reflection such that $H_3A_3(4:5,3) = \alpha e_1$. Then,

$$\tilde{H}_{3}A_{3}\tilde{H}_{3}^{T} = \begin{pmatrix} x & x & x & x & x \\ x & x & x & x & x \\ 0 & x & x & x & x \\ 0 & 0 & + & + & + \\ 0 & 0 & 0 & + & + \end{pmatrix} \tilde{H}_{3}^{T} = \begin{pmatrix} x & x & x & + & + \\ x & x & x & + & + \\ 0 & x & x & + & + \\ 0 & 0 & x & + & + \\ 0 & 0 & 0 & + & + \end{pmatrix} = A_{4}.$$

Remarks Need n-2 reflections. Don't need $Q = \tilde{H}_3 \tilde{H}_2 \tilde{H}_1$.

If *A* is Symmetric/Hermitean then the Hessenberg form is tridiagonal.

August 9, 2017 Sida 14/31

Hessenberg/QR step

The decomposition $A_k = Q_k R_k$ is computed using n - 1 Givens Rotations.

$$G_{34}G_{23}G_{12}\begin{pmatrix} x & x & x & x \\ x & x & x & x \\ 0 & x & x & x \\ 0 & 0 & x & x \end{pmatrix} = G_{34}G_{23}\begin{pmatrix} + & + & + & + & + \\ 0 & + & + & + & + \\ 0 & x & x & x \\ 0 & 0 & x & x \end{pmatrix} = G_{34}G_{23}\begin{pmatrix} + & + & + & + & + \\ 0 & + & + & + & + \\ 0 & 0 & x & x \end{pmatrix} = G_{34}G_{23}\begin{pmatrix} + & + & + & + & + \\ 0 & + & + & + & + \\ 0 & 0 & x & x \end{pmatrix} = G_{34}G_{23}\begin{pmatrix} + & + & + & + & + \\ 0 & + & + & + & + \\ 0 & 0 & x & x \end{pmatrix} = G_{34}G_{23}\begin{pmatrix} + & + & + & + & + \\ 0 & + & + & + & + \\ 0 & 0 & x & x \end{pmatrix} = \begin{pmatrix} x & x & x & x \\ 0 & x & x & x \\ 0 & 0 & + & + \\ 0 & 0 & 0 & + \end{pmatrix} = R_k.$$

We have computed
$$A_k = Q_k R_k$$
 with $Q_k^T = G_{34}G_{23}G_{12}$.

Multiply $A_{k+1} = R_k Q_k = R_k G_{12}^T G_{23}^T G_{34}^T$. We obtain

$$\begin{pmatrix} x & x & x & x \\ 0 & x & x & x \\ 0 & 0 & x & x \\ 0 & 0 & 0 & x \end{pmatrix} G_{12}^{T} G_{23}^{T} G_{34}^{T} = \begin{pmatrix} + + x & x \\ + + x & x \\ 0 & 0 & x & x \\ 0 & 0 & 0 & x \end{pmatrix} G_{23}^{T} G_{34}^{T} = \begin{pmatrix} x & x + + x \\ x & x + + x \\ 0 & + x \\ 0 & + x \\ 0 & 0 & x \end{pmatrix} G_{34}^{T} = \begin{pmatrix} x & x + + x \\ x & x + + \\ 0 & x + + \\ 0 & x + + \\ 0 & 0 & + + \end{pmatrix} = A_{k+1}.$$

Note that $A_{k+1} = R_k Q_k$ is Hessenberg. Need 2(n-1) Givens rotations. Don't need to keep the rotations G_{12} , G_{23} and G_{34} .

Algorithm Compute one eigenvalue by

```
1. Hessenberg reduction A := \text{Hess}(A).

2. Save elements E := A(1:2, 1).

3. while |A(n-1,n)| < \text{tol}

for j = 1 : n - 1

Create Rotation G_{j,j+1} using E.

Rotate rows A := G_{j,j+1}A.

Save elements E := A(j+1:j+2,j+1).

Rotate columns A := AG_{j,j+1}^T.

end

end
```

Question What happens if eigenvalues are complex? Algorithms for computing eigenvalues are *iterative*. Why?

August 9, 2017 Sida 17/31

Theorem There is no explicit formula for the solution of polynomial equations of degree five or higher.

This is called the Abel-Ruffini theorem.

Remark If there were an explicit formula for eigenvalues we could use the *companion* matrix to get an explicit formula for polynomials.

August 9, 2017 Sida 18/31

Shifted QR algorithm

The convergence can be increased by using shifts.

$$A_k - s_k I = Q_k R_k, \qquad A_{k+1} = R_k Q_k + s_k I.$$

Lemma It holds that $A_{k+1} = Q_k^H A_k Q_k$ so A_k and A_{k+1} are similar.

Remark The element $(A_k)_{i,i-1}$ tends to zero with a rate equal to

$$\gamma = \left| \frac{\lambda_i - s_k}{\lambda_{i-1} - s_k} \right|$$

Hence if $\lambda_i \approx s_k$ we get *very* fast convergence.

Shift selection strategies

Single shift Select $s_k = (A_k)_{n,n}$.

Example We select a Hessenberg matrix *A* and perform a few *QR* steps. In Matlab

```
>> A0 = [2 1 1 1; 1 3 1 1; 0 1 4 1; 0 0 1 5];
>> s=A0(4,4); [Q,R]=qr(A0-s*eye(4));
>> A1=R*Q+s*eye(4)
A = A1 =
2 1 1 1 1.50 0.08 -0.49 -0.89
1 3 1 1 0.59 2.64 -0.45 -0.49
0 1 4 1 0 0.54 4.60 0.80
0 0 1 5 0 0 1.47 5.25
```

The matrix A_1 is Hessenberg and the new shift $s_1 = 5.25$.

We perform a few more QR steps to obtain

Α4	=			
	1.4007	-0.3106	0.2598	0.6786
	0.1916	2.7684	-0.2204	1.0612
	0	0.1136	3.8583	0.9829
	0	0	-0.0081	5.9727

Remark Fast convergence since $|(A_3)_{4,3}/(A_4)_{4,3}|\approx 29.2$.

Finally we see that

A6 =			
1.4164	-0.4228	0.2554	0.6012
0.0948	2.7618	-0.2617	1.0482
0	0.0493	3.8531	1.0535
0	0	-0.0000	5.9688

Remark Here $|(A_6)_{4,3}| = 5.1875 \cdot 10^{-11}$. Proceed to use decoupling and shift with $s_k = (A_6)_{3,3}$.

August 9, 2017 Sida 21/31

August 9, 2017 Sida 22/31

Example We select a new Hessenberg matrix *A* and perform several *QR* steps using $s_k = (A_k)_{4,4}$. In Matlab

>> A= [2 -1 6 7 3 -2 1 1 0 4 -3 2 0 0 -2 3]; >> I = eye(4); >> for k=1:20 s=A(4,4);[Q,R]=qr(A-s*I); A=R*Q+s*I; end

What happens now?

After 20 QR steps we obtain

A20 =			
-3.0327	-5.6708	-3.3364	-4.2027
1.8228	-3.8883	-0.5321	0.8355
0	0.0000	2.2067	5.4178
0	0	-0.9909	4.7143

Observation The lower 2×2 block has the eigenvalues $\lambda_{3,4} = 3.46 \pm 1.94i$. We never introduce complex numbers in the computations.

Can still use decoupling. There is an analytic formula for the 2×2 case.

Double shift Select s_k as an eigenvalue of the block $(A_k)(n-1:n, n-1:n)$. In Matlab

```
for k=1:5
    s=max(eig(A(3:4,3:4)));
    [Q,R]=qr(A-s*eye(4));
    A=R*Q+s*eye(4);
end
```

The second shift is $s_2 = 3.2644 + 2.1334i$. Complex numbers are introduced.

August 9, 2017 Sida 25/31

The Practical QR algorithm

A practical implementation includes the steps

- Hessenberg Reduction A := Hess(A).
- Select a shift s_k using a strategy.
- The *QR* step is implemented using Givens rotations.
- If any |A(j+1,j)| < tol then use decoupling:

$$A:=\left(\begin{array}{cc}A_1 & B\\ 0 & A_2\end{array}\right).$$

- If we find a 2×2 block. Use the analytic formula.
- Computed eigenvectors using Inverse iteration.

Remark The Matlab function eig implements this. Its difficult to set tolerances.

After 5 QR steps with complex shifts we obtain

Α5	=			
-3	.75-1.01i	-5.55-0.38i	2.62+3.22i	-0.10+3.04i
1	.66+0.00i	-3.16+1.00i	-0.28-0.51i	0.76-1.44i
0	.00+0.00i	-0.05+0.00i	3.46-1.94i	3.15+3.99i
0	.00+0.00i	0.00+0.00i	0.00+0.00i	3.46+1.94i

Remark If *A* is real complex numbers should be avoided. Use decoupling on 2×2 blocks instead.

August 9, 2017 Sida 26/31

Application: Google Page Rank

Google ranks about $45 \cdot 10^9$ webb pages (2011). The ability to identify high quality webb pages is a large part of Googles success.

- The ranking is based on the link structure of the internet and has to be recomputed often.
- A *Web Crawler* downloads webb pages, collects *keywoards* for indexing, and finds links to, and from, webb pages.
- All webb pages relevant to a certain search phrase are retrived. They are displayed in the order given by the their *PageRank*.

Each webb page is assigned an index i = 1, ..., N.

The *PageRank* $r_i \in [0, 1]$) is a quality measure for webb pages. It is based on the set of *inlinks* I_i and *outlinks* O_i .

Idea Good webb pages get links from many other good webpages.

Definition The Google PageRank is r_i for webb page i satisfies,

$$r_i = \sum_{j \in I_i} \frac{r_j}{N_j}.$$

Remarks This means that the rank of a page *j* is divided equally between the its outlinks. This is a matrix equation

r = Ar, $A_{i,j} = \begin{cases} 1/N_j, & \text{if page } j \text{ links to page } i, \\ 0, & \text{otherwise.} \end{cases}$

Note If page *j* has at least one outlink then the corresponding column A(:,j) sums to 1. *A* is the *Transition matrix*.

August 9, 2017 Sida 30/31

August 9, 2017 Sida 29/31

Definition If page *j* lacks outlinks then change the corresponding column to

$$A(:,j) = e/N, \qquad e = (1, 1, ..., 1)^T.$$

Lemma The largest eigenvalue of the modified Google transition matrix is $\lambda_{max} = 1$ and the corresponding eigenvector *r* has elements $0 \le r_i \le 1$.

Remarks We need one eigenvector of a matrix A of dimension $N = 45 \cdot 10^9$. The **only** realistic choice is the *Power Method*.