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Similarity Transformations

Definition If A = XBX−1 then we say that A and B are

similar and X is called a similarity transformation.

Lemma If A and B are similar then λ(A) = λ(B).

Remark A similarity transformation preserves eigenvalues. Specific

matrices to use includes Gauss transformations, Householder

recleftions and Givens rotations.
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Sensitivity

Let A ∈ C
n×n be non–defective and let (x̂, λ̂) be an approximate

eigenpair of A, with ‖x̂‖2 = 1, and put r = Ax̂ − λ̂x̂.

Proposition There is an eigenvalue λ of A such that

|λ− λ̂| ≤ κ2(X)‖r‖2.

Corollary If A is Symmetric or Hermitean then

|λ− λ̂| ≤ ‖r‖2.

Remark This is often called the Bauer-Fike Theorem.
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Example Let (λ̂, x̂) = (1, (0, 0, 1)T ) and consider the matrix

A =





3 2 0

2 4 ε
0 ε 1



 ,

The residual is

r = Ax̂ − λ̂x̂ =





0

ε
1



− 1 ·





0

0

1



 =





0

ε
0



 .

Since the matrix is symmetric κ2(X) = 1 and

|λ3 − 1| ≤ κ2(X)‖r‖2 = |ε|.

Remark A small change to aij leads to a small change in the

eigenvalues λk.
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The Decoupling theorem

Theorem Suppose A has a block-structure

A =

(

A1 B

0 A2

)

,

then λ(A) = λ(A1) ∪ λ(A2).

Corollary If T is an upper triangular matrix then its

eigenvalues are the diagonal elements, i.e. λi = Tii.

Remark If λ̂i is an eigenvalue then we get the corresponding

eigenvector x̂i efficiently by inverse iteration.
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Algorithm Let A(0) = A. Generate a sequence of similar

matrices,

A(k+1) = XkA(k)X−1
k , k = 1, 2, . . .

such that

lim
k→∞

A(k) = T, or lim
k→∞

A(k) = D,

where T is upper triangular and D is diagonal.

Question What types of similarity transformations are needed? Not

every matrix can be written A = XDXT , with X orthogonal.
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The Schur decomposition

Theorem Every matrix A ∈ R
n×n has a Schur

decomposition, i.e.

A = QTQH,

where T is upper triangular and Q is unitary.

Corollary If A is Hermitean then T is diagonal and Q the

eigenvector matrix.

Remarks Neither T or Q are unique. The eigenvalues of a matrix A

can be computed by using only reflections or rotations.
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The QR algorithm

Algorithm Put A0 = A and do

Ak = QkRk, and Ak+1 = RkQk, for k = 1, 2, . . .

In each step compute the QR decomposition of Ak and multiply the

factors in reverse order. Need O(n3) operations/step.

Proposition The sequence of matrices {Ak} are similar.

Remark If the algorithm converges to an upper triangular matrix then

we have the eigenvalues of A.
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Proposition It holds that

Ak+1 = SH
k ASk, Sk = Q0Q1 · · ·Qk.

Also Sk−1 provides an orthonormal basis for Range(Ak).

Theorem Suppose A = AT and |λ1|>. . .> |λn|. Then

Ak → D = diag(λi) as k → ∞.

Remark The proof is very similar to the convergence proof for the

power method. In the non symmetric case Ak → T , where T is upper

triangular.
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Example Perform k = 100 QR steps. In Matlab

>> A=[ 3 4 1 ; 4 5 -1 ; 1 -1 6];

>> Ak=A;

>> for k=1:100, [Q,R]=qr(Ak); Ak=R*Q;,end;

Ak =

8.1388 0.0000 -0.0000

0.0000 6.2909 0.0000

0.0000 -0.0000 -0.4297

The computed eigenvalues have 15 correct digits. Note that the

eigenvectors are not saved during the QR process.
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Observation Computing the QR decomposition of a full matrix Ak is

very expensive. For a practically viable algorithm we need to reduce

the computational work.

Question How to find a similarity transformation X so that it is easy

to compute the QR decomposition of B = XAX−1?
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The Hessenberg Decomposition

Definition A matrix H is Hessenberg if Hij=0 for i> j+1.

Proposition Every matrix A ∈ R
n×n can be written as

A = QHQH, where H is Hessenberg and Q is orthogonal.

Remarks If A is Hermitean or Symmetric then the corresponding

Hessenberg matrix is tridiagonal.

In Matlab H=hess(A);
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Example Suppose A is a 5 × 5 matrix. First select a Householder
reflection such that H1A(2 : 5, 1) = αe1. Then,

H̃1AH̃T
1 =













x x x x x

+ + + + +
0 + + + +
0 + + + +
0 + + + +













H̃T
1 =













x + + + +
x + + + +
0 + + + +
0 + + + +
0 + + + +













= A2.

Next select a reflection such that H2A2(3 : 5, 2) = αe1. Then

H̃2A2H̃T
2 =













x x x x x

x x x x x

0 + + + +
0 0 + + +
0 0 + + +













H̃T
2 =













x x + + +
x x + + +
0 x + + +
0 0 + + +
0 0 + + +













= A3.
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For the final step select a Householder reflection such that
H3A3(4 : 5, 3) = αe1. Then,

H̃3A3H̃T
3 =













x x x x x

x x x x x

0 x x x x

0 0 + + +
0 0 0 + +













H̃T
3 =













x x x + +
x x x + +
0 x x + +
0 0 x + +
0 0 0 + +













= A4.

Remarks Need n−2 reflections. Don’t need Q = H̃3H̃2H̃1.

If A is Symmetric/Hermitean then the Hessenberg form is tridiagonal.
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Hessenberg/QR step

The decomposition Ak = QkRk is computed using n − 1 Givens
Rotations.

G34G23G12









x x x x

x x x x

0 x x x

0 0 x x









= G34G23









+ + + +
0 + + +
0 x x x

0 0 x x









=

G34









x x x x

0 + + +
0 0 + +
0 0 x x









=









x x x x

0 x x x

0 0 + +
0 0 0 +









= Rk.

We have computed Ak = QkRk with QT
k = G34G23G12.
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Multiply Ak+1 = RkQk = RkGT
12GT

23GT
34. We obtain









x x x x

0 x x x

0 0 x x

0 0 0 x









GT
12GT

23GT
34 =









+ + x x

+ + x x

0 0 x x

0 0 0 x









GT
23GT

34 =









x + + x

x + + x

0 + + x

0 0 0 x









GT
34 =









x x + +
x x + +
0 x + +
0 0 + +









= Ak+1.

Note that Ak+1 = RkQk is Hessenberg. Need 2(n−1) Givens

rotations. Don’t need to keep the rotations G12, G23 and G34.
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The QR Algorithm

Algorithm Compute one eigenvalue by

1. Hessenberg reduction A := Hess(A).

2. Save elements E := A(1 :2, 1).

3. while |A(n−1, n)| < tol

for j = 1 : n − 1

Create Rotation Gj,j+1 using E.

Rotate rows A := Gj,j+1A.

Save elements E := A(j+1 : j+2, j+1).
Rotate columns A := AGT

j,j+1.

end

end

Question What happens if eigenvalues are complex? Algorithms for

computing eigenvalues are iterative. Why?
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Theorem There is no explicit formula for the solution of

polynomial equations of degree five or higher.

This is called the Abel-Ruffini theorem.

Remark If there were an explicit formula for eigenvalues we could

use the companion matrix to get an explicit formula for polynomials.
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Shifted QR algorithm

The convergence can be increased by using shifts.

Ak − skI = QkRk, Ak+1 = RkQk + skI.

Lemma It holds that Ak+1 = QH
k AkQk so Ak and Ak+1 are

similar.

Remark The element (Ak)i,i−1 tends to zero with a rate equal to

γ =

∣

∣

∣

∣

λi − sk

λi−1 − sk

∣

∣

∣

∣

.

Hence if λi≈sk we get very fast convergence.
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Shift selection strategies

Single shift Select sk = (Ak)n,n.

Example We select a Hessenberg matrix A and perform a few QR
steps. In Matlab

>> A0 = [2 1 1 1; 1 3 1 1 ; 0 1 4 1 ; 0 0 1 5];

>> s=A0(4,4); [Q,R]=qr(A0-s*eye(4));

>> A1=R*Q+s*eye(4)

A = A1 =

2 1 1 1 1.50 0.08 -0.49 -0.89

1 3 1 1 0.59 2.64 -0.45 -0.49

0 1 4 1 0 0.54 4.60 0.80

0 0 1 5 0 0 1.47 5.25

The matrix A1 is Hessenberg and the new shift s1 = 5.25.
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We perform a few more QR steps to obtain

A4 =

1.4007 -0.3106 0.2598 0.6786

0.1916 2.7684 -0.2204 1.0612

0 0.1136 3.8583 0.9829

0 0 -0.0081 5.9727

Remark Fast convergence since |(A3)4,3/(A4)4,3|≈29.2.
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Finally we see that

A6 =

1.4164 -0.4228 0.2554 0.6012

0.0948 2.7618 -0.2617 1.0482

0 0.0493 3.8531 1.0535

0 0 -0.0000 5.9688

Remark Here |(A6)4,3| = 5.1875 · 10−11. Proceed to use decoupling

and shift with sk = (A6)3,3.
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Example We select a new Hessenberg matrix A and perform several

QR steps using sk = (Ak)4,4. In Matlab

>> A= [ 2 -1 6 7

3 -2 1 1

0 4 -3 2

0 0 -2 3];

>> I = eye(4);

>> for k=1:20

s=A(4,4);[Q,R]=qr(A-s*I); A=R*Q+s*I;

end

What happens now?

August 9, 2017 Sida 23 / 31

After 20 QR steps we obtain

A20 =

-3.0327 -5.6708 -3.3364 -4.2027

1.8228 -3.8883 -0.5321 0.8355

0 0.0000 2.2067 5.4178

0 0 -0.9909 4.7143

Observation The lower 2 × 2 block has the eigenvalues

λ3,4 = 3.46±1.94i. We never introduce complex numbers in the

computations.

Can still use decoupling. There is an analytic formula for the 2 × 2

case.
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Double shift Select sk as an eigenvalue of the block

(Ak)(n−1 :n, n−1 :n). In Matlab

for k=1:5

s=max(eig(A(3:4,3:4)));

[Q,R]=qr(A-s*eye(4));

A=R*Q+s*eye(4);

end

The second shift is s2 = 3.2644 + 2.1334i. Complex numbers are

introduced.
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After 5 QR steps with complex shifts we obtain

A5 =

-3.75-1.01i -5.55-0.38i 2.62+3.22i -0.10+3.04i

1.66+0.00i -3.16+1.00i -0.28-0.51i 0.76-1.44i

0.00+0.00i -0.05+0.00i 3.46-1.94i 3.15+3.99i

0.00+0.00i 0.00+0.00i 0.00+0.00i 3.46+1.94i

Remark If A is real complex numbers should be avoided. Use

decoupling on 2 × 2 blocks instead.
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The Practical QR algorithm

A practical implementation includes the steps

• Hessenberg Reduction A := Hess(A).

• Select a shift sk using a strategy.

• The QR step is implemented using Givens rotations.

• If any |A(j+1, j)| < tol then use decoupling:

A :=

(

A1 B

0 A2

)

.

• If we find a 2 × 2 block. Use the analytic formula.

• Computed eigenvectors using Inverse iteration.

Remark The Matlab function eig implements this. Its difficult to set

tolerances.
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Application: Google Page Rank

Google ranks about 45 · 109 webb pages (2011). The ability to

identify high quality webb pages is a large part of Googles success.

• The ranking is based on the link structure of the internet and has

to be recomputed often.

• A Web Crawler downloads webb pages, collects keywoards for

indexing, and finds links to, and from, webb pages.

• All webb pages relevant to a certain search phrase are retrived.

They are displayed in the order given by the their PageRank.
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i

Each webb page is assigned an index i = 1, . . . ,N.

The PageRank ri ∈ [0, 1]) is a quality measure for webb pages. It is

based on the set of inlinks Ii and outlinks Oi.

Idea Good webb pages get links from many other good webpages.
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Definition The Google PageRank is ri for webb page i

satisfies,

ri =
∑

j∈Ii

rj

Nj

.

Remarks This means that the rank of a page j is divided equally

between the its outlinks. This is a matrix equation

r = Ar, Ai,j =

{

1/Nj, if page j links to page i,

0, otherwise.

Note If page j has at least one outlink then the corresponding column

A(:, j) sums to 1. A is the Transition matrix.
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Definition If page j lacks outlinks then change the

corresponding column to

A(:, j) = e/N, e = (1, 1, . . . , 1)T .

Lemma The largest eigenvalue of the modified Google

transition matrix is λmax = 1 and the corresponding

eigenvector r has elements 0 ≤ ri ≤ 1.

Remarks We need one eigenvector of a matrix A of dimension

N = 45 · 109. The only realistic choice is the Power Method.
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