Perturbation Theory

- The Bauer-Fike theorem. The residual.
- Conditioning of a simple eigenvalue.

Symmetric Matrices

- The minimax property. The Law of Inertia.
- Tridiagonal methods.
- A Divide and Conquer method.

Corollary Let $A \in \mathbb{C}^{n \times n}$ be non-defective with eigenvector matrix X. There is an eigenvalue λ of A such that

$$
|\lambda-\hat{\lambda}| \leq \kappa_{2}(X)\|r\|_{2}
$$

Proof Let $(\hat{x}, \hat{\lambda})$ be an approximate eigenpair of A, with $\|\hat{x}\|_{2}=1$, and put $E=r \hat{x}^{H}$, where $r=A \hat{x}-\hat{\lambda} \hat{x}$.

Conditioning for a single eigenvalue

Theorem (Bauer-Fike) If μ is an eigenvalue of

 $A+E \in \mathbb{C}^{n \times n}, A$ is non-defective, then$$
\min _{\lambda \in \lambda(A)}|\lambda-\mu| \leq \kappa_{p}(X)\|E\|_{p}
$$

where $\|\cdot\|_{p}$ denotes any of the p-norms and X is the eigenvector matrix of A.

Remark The $Q R$ algorithm computes a Schur decomposition

$$
\hat{T}=Q^{T}(A+E) Q, \quad Q^{T} Q=I, \quad\|E\|_{2} \leq \mathcal{O}(n \mathbf{u})\|A\|_{2}
$$

The largest eigenvalues are computed with good relative accuracy.

Definition Let λ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$. If $y^{H} A=\lambda y^{Y},\|y\|_{2}=1$, then y is a left eigenvector of A.

Remark The existance of left and right eigenvectors follows from the Jordan decomposition.

Lemma Suppose λ is a simple eigenvalue of $A \in \mathbb{C}^{n \times n}$. The left- and right eigenvectors satisfy $y^{H} x \neq 0$.

The Symmetric Eigenvalue Problem

Lemma Let (λ, x) be a simple eigenvalue of $A \in \mathbb{C}^{n \times n}$ and $A(t)=A+t E$. Then

$$
\lambda(t)=\lambda+t y^{H} E x+\mathcal{O}\left(t^{2}\right)
$$

where y is the left-eigenvector associated with λ.

Definition The condition number for a simple eigenvalue λ is

$$
\kappa_{2}(\lambda, A)=\frac{\|x\|_{2}\|y\|_{2}}{\left|y^{H} x\right|} .
$$

The Law of Inertia

Definition The Inertia of a symmetric matrix A is a triplet (m, z, p) where m, z, and p, are the number of positive, zero, and negative eigenvalues respectively.

Theorem (Sylvester's Law) If the matrix A is symmetric and X is non-singular then A and $X^{T} A X$ have the same inertia.

Remark Subtract a shift and compute the decomposition

$$
A-\mu I=L D L^{T}
$$

to find out how many eigenvalues λ_{i} are larger or smaller than μ.

Tridiagonal Methods

Let,

$$
T=\left(\begin{array}{ccccc}
a_{1} & b_{1} & 0 & 0 & 0 \\
b_{1} & a_{2} & b_{2} & 0 & 0 \\
0 & b_{2} & a_{3} & b_{3} & 0 \\
0 & 0 & b_{3} & a_{4} & b_{4} \\
0 & 0 & 0 & b_{4} & a_{5}
\end{array}\right)
$$

Lemma Let $T_{r}=T(1: r, 1: r)$ and $p_{r}(x)=\operatorname{det}\left(T_{r}-x I\right)$.
Then the recursion,

$$
p_{r}(x)=\left(a_{r}-x\right) p_{r-1}(x)-b_{r-1}^{2} p_{r-2}(x), \quad p_{0}(x)=1,
$$

holds.

Remark The polynomial $p_{n}(x)$ can be evaluated in $\mathcal{O}(n)$ operations.

Diagonal Plus Rank-1

$$
\begin{aligned}
& \text { Lemma Suppose } D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right) \\
& d_{1}>\cdots>d_{n} \text {. Assume } \rho \neq 0 \text { and that } z \in \mathbb{R}^{n} \text { has no zero } \\
& \text { components. If } \\
& \qquad \quad\left(D+\rho z z^{T}\right) v=\lambda v, \quad v \neq 0 \\
& \text { then } z^{T} v \neq 0 \text { and } D-\lambda I \text { is non-singular. }
\end{aligned}
$$

Remark This can be the basis of a recursive algorithm since an update $A^{(k)}:=A^{(k-1)}+z z^{T}$ can split a tridiagonal matrix into two tridiagonal blocks.

```
Suppose }\mp@subsup{p}{n}{}(y)\mp@subsup{p}{n}{}(z)<0\mathrm{ and }y<z\mathrm{ then
    while }|y-z|>\epsilon(|y|+|z|
        x=(y+z)/z
        if }\mp@subsup{p}{n}{}(x)\mp@subsup{p}{n}{}(y)<0\mathrm{ then
        z=x
    else
        y=x
    end
    end
```

Remark This bisection procedure is guaranteed to converge. A viable way to compute a couple of eigenvalues.

Theorem (Interlacing) Suppose $B=A+\tau c c^{T}$, where $A \in \mathbb{R}^{n \times n}$ is symmetric and $\|c\|_{2}=1$. If $\tau>0$ then

$$
\lambda_{i}(A) \leq \lambda_{i}(B) \leq \lambda_{i-1}(A)
$$

while if $\tau<0$ then

$$
\lambda_{i+1}(A) \leq \lambda_{i}(B) \leq \lambda_{i}(A)
$$

Remark There are many interlacing theorems.

Theorem Suppose $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$,
$d_{1}>\cdots>d_{n}$. Assume $\rho \neq 0$ and that $z \in \mathbb{R}^{n}$ has no zero components. If V is orthogonal such that

$$
V^{T}\left(D+\rho z z^{T}\right) V=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right),
$$

with $\lambda_{1} \geq \ldots \lambda_{n}$ and $V=\left(v_{1}, \ldots, v_{n}\right)$ then
a) The λ_{i} are the n zeros of $f(\lambda)=1+\rho z^{T}(D-\lambda I)^{-1} z$.
b) The eigenvector v_{i} is a multiple of $\left(D-\lambda_{i} I\right)^{-1} z$.

Remark To find V we solve $f(z)=0$, using e.g. Newtons Method, and find v_{i} by normalizing $\left(D-\lambda_{i}\right)^{-1} z$. Interlacing Theorem places one root in each interval $\left(d_{i-1}, d_{i}\right)$.

How to take advantage of this?

The singular value decomposition

Proposition Every matrix $A \in \mathbb{R}^{m \times n}$ has a decomposition

$$
A=U \Sigma V^{T}
$$

where U and V are orthogonal and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal with diagonal elements $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\min (n, m)} \geq 0$.

Remark The diagonal elements $\left\{\sigma_{i}\right\}$ are called singular values and the columns $\left\{u_{i}\right\}$ of U and the columns $\left\{v_{i}\right\}$ of V are called right and left singular vectors.

A Divide and Conquer Method

Lemma Let T be symmetric and tridiagonal. There is a c, $\|c\|_{2}=1$, such that

$$
T=\left(\begin{array}{cc}
T_{1} & 0 \\
0 & T_{2}
\end{array}\right)+\rho c c^{T}
$$

where T_{1} and T_{2} are tridiagonal and ρ is a scalar.

Remark Given two Schur decompositions $Q_{1}^{T} T_{1} Q_{1}=D_{1}$ and $Q_{2}^{T} T_{2} Q_{2}=D_{2}$ we can combine

$$
U^{T} T U=D+\rho z z^{T}, \quad U=\operatorname{diag}\left(Q_{1}, Q_{2}\right), \quad z=U^{T} c
$$

Excellent for parallel implementation!

Example Compute the SVD in Matlab by

$\mathrm{U}=$			
-0.4025	0.0684	0.9129	-0.0000
0.1675	0.9859	-0.0000	0.0000
-0.8050	0.1368	-0.3651	0.4472
0.4025	-0.0684	0.1826	0.8944
$\mathrm{S}=$			
9.2780	0	0	
0	3.4524	0	
0	0	0.0000	
0	0	0	

Remark The matrix A has rank 2. V is 3×3 orthogonal.

Example Let $A \in \mathbb{R}^{4 \times 3}$. Then

$$
A=\left(\begin{array}{llll}
u_{1} & u_{2} & u_{3} & u_{4}
\end{array}\right)\left(\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right)^{T}
$$

Remark The vectors $\left\{u_{i}\right\}$ are a basis for \mathbb{R}^{4} and the vectors $\left\{v_{i}\right\}$ are a basis for \mathbb{R}^{3}

A matrix $A \in \mathbb{R}^{m \times n}$ represents a linear mapping

$$
A: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}
$$

Remark If $U=\left(u_{1}, \ldots, u_{m}\right) \in \mathbb{R}^{m \times m}$ is orthogonal then the set of vectors $\left\{u_{i}\right\}$ form an orthogonal basis for \mathbb{R}^{m}.

Observation In the basis U, V the linear mapping is represented by the diagonal matrix D.

Linear Systems of Equations

Lemma Let $A \in \mathbb{R}^{m \times n}$ and $A=U \Sigma V^{T}$. it holds that

$$
A v_{i}=\sigma_{i} u_{i} \operatorname{and} A^{T} u_{i}=\sigma_{i} v_{i}, i=1,2, \ldots, \min (m, n)
$$

Lemma Let $A \in \mathbb{R}^{m \times n}$ and $A=U \Sigma V^{T}$. We can write

$$
A=\sum_{i=1}^{\min (m, n)} \sigma_{i} u_{i} v_{i}^{T}
$$

Lemma Let $A \in \mathbb{R}^{n \times n}$ be non-singular and $A=U \Sigma V^{T}$. Then the solution to the linear system $A x=b$ is given by

$$
x=V \Sigma^{-1} U^{T} b=\sum_{i=1}^{n} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i}
$$

Remarks The solution exists, i.e. A is non-singular, if $\sigma_{n}>0$. If σ_{n} is very small the system is Ill-conditioned.

More expensive compared to using the $L U$ factorization. Reveals linear dependencies among the columns of A.

Norms and the Condition Number

Recall If U is orthogonal and x is a vector then $\|U x\|_{2}=\|x\|_{2}$.

Lemma The norm is $\|A\|_{2}=\sigma_{1}$.

Corollary The condition number is $\kappa_{2}(A)=\frac{\sigma_{1}}{\sigma_{n}}$.

Remark Previously we used $\|A\|_{2}=\left(\lambda_{\max }\left(A^{T} A\right)\right)^{1 / 2}$. Since
$A^{T} A=U \Sigma^{T} \Sigma U^{T}$ we get $\lambda_{i}\left(A^{T} A\right)=\sigma_{i}^{2}$.

