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Perturbation Theory

Theorem (Bauer-Fike) If µ is an eigenvalue of

A + E ∈ C
n×n, A is non-defective, then

min
λ∈λ(A)

|λ− µ| ≤ κp(X)‖E‖p,

where ‖ · ‖p denotes any of the p-norms and X is the

eigenvector matrix of A.

Remark The QR algorithm computes a Schur decomposition

T̂ = QT(A + E)Q, QTQ = I, ‖E‖2 ≤ O(nu)‖A‖2.

The largest eigenvalues are computed with good relative accuracy.
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Corollary Let A ∈ C
n×n be non–defective with

eigenvector matrix X. There is an eigenvalue λ of A such

that

|λ− λ̂| ≤ κ2(X)‖r‖2.

Proof Let (x̂, λ̂) be an approximate eigenpair of A, with ‖x̂‖2 = 1,

and put E = rx̂H , where r = Ax̂ − λ̂x̂.

August 29, 2017 Sida 3 / 21

Conditioning for a single eigenvalue

Definition Let λ be an eigenvalue of A ∈ C
n×n. If

yHA = λyY , ‖y‖2 = 1, then y is a left eigenvector of A.

Remark The existance of left and right eigenvectors follows from the

Jordan decomposition.

Lemma Suppose λ is a simple eigenvalue of A ∈ C
n×n.

The left- and right eigenvectors satisfy yHx 6= 0.

August 29, 2017 Sida 4 / 21



Lemma Let (λ, x) be a simple eigenvalue of A ∈ C
n×n

and A(t) = A + tE. Then

λ(t) = λ+ tyHEx +O(t2),

where y is the left-eigenvector associated with λ.

Definition The condition number for a simple eigenvalue

λ is

κ2(λ,A) =
‖x‖2‖y‖2

|yHx|
.
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The Symmetric Eigenvalue Problem

Theorem If A ∈ R
n×n is symmetric then there exists a

real orthogonal Q such that

QTAQ = D = diag(λ1, . . . , λn).

Remark This follows directly from the Schur decomposition.

The eigenvalues are real since

λxHx=xH(λx)=xH(Ax)=(AHx)Hx = (Ax)Hx=(λx)Hx= λ̄xHx
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Theorem If A ∈ R
n×n is symmetric then

λk(A) = max
dim(S)=k

min
y∈S, 6=0

yT Ay

yT y
, k = 1, 2, . . . , n. �

Remarks This is called the Courant–Fischer Minimax theorem.
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The Law of Inertia

Definition The Inertia of a symmetric matrix A is a triplet

(m, z, p) where m, z, and p, are the number of positive,

zero, and negative eigenvalues respectively.

Theorem (Sylvester’s Law) If the matrix A is symmetric

and X is non-singular then A and XTAX have the same

inertia.

Remark Subtract a shift and compute the decomposition

A − µI = LDLT ,

to find out how many eigenvalues λi are larger or smaller than µ.
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Tridiagonal Methods

Let,

T =













a1 b1 0 0 0

b1 a2 b2 0 0

0 b2 a3 b3 0

0 0 b3 a4 b4

0 0 0 b4 a5













.

Lemma Let Tr=T(1 :r, 1 :r) and pr(x) = det(Tr − xI).
Then the recursion,

pr(x) = (ar − x)pr−1(x) − b2
r−1pr−2(x), p0(x) = 1,

holds.

Remark The polynomial pn(x) can be evaluated in O(n) operations.
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Suppose pn(y)pn(z) < 0 and y < z then

while |y − z| > ǫ(|y|+ |z|)

x = (y + z)/z

if pn(x)pn(y) < 0 then

z=x

else

y=x

end

end

Remark This bisection procedure is guaranteed to converge. A viable

way to compute a couple of eigenvalues.
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Diagonal Plus Rank-1

Lemma Suppose D = diag(d1, d2, . . . , dn),
d1 > · · · > dn. Assume ρ 6= 0 and that z ∈ R

n has no zero

components. If

(D + ρzzT)v = λv, v 6= 0,

then zTv 6= 0 and D − λI is non-singular.

Remark This can be the basis of a recursive algorithm since an

update A(k) := A(k−1) + zzT can split a tridiagonal matrix into two

tridiagonal blocks.
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Theorem (Interlacing) Suppose B = A + τccT , where

A ∈ R
n×n is symmetric and ‖c‖2 = 1. If τ > 0 then

λi(A) ≤ λi(B) ≤ λi−1(A),

while if τ < 0 then

λi+1(A) ≤ λi(B) ≤ λi(A).

Remark There are many interlacing theorems.
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Theorem Suppose D = diag(d1, d2, . . . , dn),
d1 > · · · > dn. Assume ρ 6= 0 and that z ∈ R

n has no zero

components. If V is orthogonal such that

VT(D + ρzzT)V = diag(λ1, . . . , λn),

with λ1 ≥ . . . λn and V = (v1, . . . , vn) then

a) The λi are the n zeros of f (λ) = 1 + ρzT(D − λI)−1z.

b) The eigenvector vi is a multiple of (D − λiI)
−1z.

Remark To find V we solve f (z) = 0, using e.g. Newtons Method,

and find vi by normalizing (D − λi)
−1z. Interlacing Theorem places

one root in each interval (di−1, di).

How to take advantage of this?
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A Divide and Conquer Method

Lemma Let T be symmetric and tridiagonal. There is a c,

‖c‖2 = 1, such that

T =

(

T1 0

0 T2

)

+ ρccT ,

where T1 and T2 are tridiagonal and ρ is a scalar.

Remark Given two Schur decompositions QT
1 T1Q1 = D1 and

QT
2 T2Q2 = D2 we can combine

UTTU = D + ρzzT , U = diag(Q1,Q2), z = UTc.

Excellent for parallel implementation!
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The singular value decomposition

Proposition Every matrix A ∈ R
m×n has a decomposition

A = UΣVT ,

where U and V are orthogonal and Σ ∈ R
m×n is diagonal

with diagonal elements σ1 ≥ σ2 ≥ · · · ≥ σmin(n,m) ≥ 0.

Remark The diagonal elements {σi} are called singular values and

the columns {ui} of U and the columns {vi} of V are called right and

left singular vectors.
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Example Compute the SVD in Matlab by

>> A=[1 -2 3 ; -2 3 1 ; 2 -4 6 ; -1 2 -3];

>> [U,S,V]=svd(A); U , S

U =

-0.4025 0.0684 0.9129 -0.0000

0.1675 0.9859 -0.0000 0.0000

-0.8050 0.1368 -0.3651 0.4472

0.4025 -0.0684 0.1826 0.8944

S =

9.2780 0 0

0 3.4524 0

0 0 0.0000

0 0 0

Remark The matrix A has rank 2. V is 3 × 3 orthogonal.
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Example Let A ∈ R
4×3. Then

A =
(

u1 u2 u3 u4

)









σ1 0 0

0 σ2 0

0 0 σ3

0 0 0









(

v1 v2 v3

)T
.

Remark The vectors {ui} are a basis for R4 and the vectors {vi} are a

basis for R3
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A matrix A ∈ R
m×n represents a linear mapping

A : Rn 7→ R
m.

Remark If U = (u1, . . . , um) ∈ R
m×m is orthogonal then the set of

vectors {ui} form an orthogonal basis for Rm.

Observation In the basis U,V the linear mapping is represented by

the diagonal matrix D.
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Lemma Let A ∈ R
m×n and A = UΣVT . it holds that

Avi = σiui andATui = σivi, i = 1, 2, . . . ,min(m, n).

Lemma Let A ∈ Rm×n and A = UΣVT . We can write

A =

min(m,n)
∑

i=1

σiuiv
T
i .
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Linear Systems of Equations

Lemma Let A ∈ R
n×n be non-singular and A = UΣVT .

Then the solution to the linear system Ax = b is given by

x = VΣ−1UTb=

n
∑

i=1

uT
i b

σi

vi.

Remarks The solution exists, i.e. A is non-singular, if σn > 0. If σn is

very small the system is Ill–conditioned.

More expensive compared to using the LU factorization. Reveals

linear dependencies among the columns of A.
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Norms and the Condition Number

Recall If U is orthogonal and x is a vector then ‖Ux‖2 = ‖x‖2.

Lemma The norm is ‖A‖2 = σ1.

Corollary The condition number is κ2(A) =
σ1

σn
.

Remark Previously we used ‖A‖2 = (λmax(A
T A))1/2. Since

ATA = UΣTΣUT we get λi(A
T A) = σ2

i .

August 29, 2017 Sida 21 / 21


