MAI0119/Lecture 5.5 - Contents

Perturbation Theory

- The Bauer-Fike theorem. The residual.
- Conditioning of a simple eigenvalue.

Symmetric Matrices

- The minimax property. The Law of Inertia.
- Tridiagonal methods.
- A Divide and Conquer method.

Perturbation Theory

Theorem (*Bauer-Fike*) If μ is an eigenvalue of $A + E \in \mathbb{C}^{n \times n}$, A is non-defective, then

$$\min_{\lambda \in \lambda(A)} |\lambda - \mu| \le \kappa_p(X) ||E||_p,$$

where $\|\cdot\|_p$ denotes any of the *p*-norms and *X* is the eigenvector matrix of *A*.

Remark The *QR* algorithm computes a Schur decomposition

 $\hat{T} = Q^T (A + E)Q, \quad Q^T Q = I, \quad \|E\|_2 \le \mathcal{O}(n\mathbf{u})\|A\|_2.$

The largest eigenvalues are computed with good relative accuracy.

August 29, 2017 Sida 2/21

August 29, 2017 Sida 1/21

Conditioning for a single eigenvalue

Corollary Let $A \in \mathbb{C}^{n \times n}$ be non–defective with eigenvector matrix *X*. There is an eigenvalue λ of *A* such that

$$|\lambda - \hat{\lambda}| \le \kappa_2(X) \|r\|_2.$$

Proof Let $(\hat{x}, \hat{\lambda})$ be an *approximate* eigenpair of *A*, with $||\hat{x}||_2 = 1$, and put $E = r\hat{x}^H$, where $r = A\hat{x} - \hat{\lambda}\hat{x}$.

Definition Let λ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$. If $y^H A = \lambda y^Y$, $||y||_2 = 1$, then y is a *left eigenvector* of A.

Remark The existance of left and right eigenvectors follows from the Jordan decomposition.

Lemma Suppose λ is a simple eigenvalue of $A \in \mathbb{C}^{n \times n}$. The left- and right eigenvectors satisfy $y^H x \neq 0$. **Lemma** Let (λ, x) be a simple eigenvalue of $A \in \mathbb{C}^{n \times n}$ and A(t) = A + tE. Then

$$\lambda(t) = \lambda + t y^H E x + \mathcal{O}(t^2),$$

where *y* is the left-eigenvector associated with λ .

K

Definition The condition number for a simple eigenvalue λ is

$$z_2(\lambda, A) = \frac{||x||_2 ||y||_2}{|y^H x|}.$$

August 29, 2017 Sida 5/21

The Symmetric Eigenvalue Problem

Theorem If $A \in \mathbb{R}^{n \times n}$ is *symmetric* then there exists a real orthogonal Q such that

$$Q^T A Q = D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$$

Remark This follows directly from the Schur decomposition.

The eigenvalues are real since

$$\lambda x^{H}x = x^{H}(\lambda x) = x^{H}(Ax) = (A^{H}x)^{H}x = (Ax)^{H}x = (\lambda x)^{H}x = \bar{\lambda}x^{H}x$$

August 29, 2017 Sida 6/21

The Law of Inertia

Definition The *Inertia* of a symmetric matrix A is a triplet (m, z, p) where m, z, and p, are the number of positive, zero, and negative eigenvalues respectively.

Theorem (*Sylvester's Law*) If the matrix A is symmetric and X is non-singular then A and X^TAX have the same inertia.

Remark Subtract a shift and compute the decomposition

$$A - \mu I = LDL^T,$$

to find out how many eigenvalues λ_i are larger or smaller than μ .

Theorem If $A \in \mathbb{R}^{n \times n}$ is symmetric then

$$\lambda_k(A) = \max_{\dim(S)=k} \min_{y \in S, \neq 0} \frac{y^T A y}{y^T y}, \qquad k = 1, 2, \dots, n. \quad \Box$$

Remarks This is called the *Courant–Fischer Minimax theorem*.

Let,

$$T = \begin{pmatrix} a_1 & b_1 & 0 & 0 & 0 \\ b_1 & a_2 & b_2 & 0 & 0 \\ 0 & b_2 & a_3 & b_3 & 0 \\ 0 & 0 & b_3 & a_4 & b_4 \\ 0 & 0 & 0 & b_4 & a_5 \end{pmatrix}.$$

Lemma Let $T_r = T(1:r, 1:r)$ and $p_r(x) = \det(T_r - xI)$. Then the recursion, $p_r(x) = (a_r - x)p_{r-1}(x) - b_{r-1}^2p_{r-2}(x), \quad p_0(x) = 1,$

holds.

Remark The polynomial $p_n(x)$ can be evaluated in $\mathcal{O}(n)$ operations.

August 29, 2017 Sida 9/21

Suppose
$$p_n(y)p_n(z) < 0$$
 and $y < z$ then
while $|y - z| > \epsilon(|y| + |z|)$
 $x = (y + z)/z$
if $p_n(x)p_n(y) < 0$ then
 $z=x$
else
 $y=x$
end
end

Remark This *bisection* procedure is guaranteed to converge. A viable way to compute a couple of eigenvalues.

August 29, 2017 Sida 10/21

Diagonal Plus Rank-1

Lemma Suppose $D = \text{diag}(d_1, d_2, \dots, d_n)$, $d_1 > \dots > d_n$. Assume $\rho \neq 0$ and that $z \in \mathbb{R}^n$ has no zero components. If

$$(D + \rho z z^T) v = \lambda v, \qquad v \neq 0$$

then $z^T v \neq 0$ and $D - \lambda I$ is non-singular.

Remark This can be the basis of a recursive algorithm since an update $A^{(k)} := A^{(k-1)} + zz^T$ can split a tridiagonal matrix into two tridiagonal blocks.

Theorem (Interlacing) Suppose $B = A + \tau cc^T$, where $A \in \mathbb{R}^{n \times n}$ is symmetric and $||c||_2 = 1$. If $\tau > 0$ then $\lambda_i(A) \le \lambda_i(B) \le \lambda_{i-1}(A)$, while if $\tau < 0$ then $\lambda_{i+1}(A) \le \lambda_i(B) \le \lambda_i(A)$.

Remark There are many interlacing theorems.

Theorem Suppose $D = \text{diag}(d_1, d_2, \dots, d_n)$, $d_1 > \dots > d_n$. Assume $\rho \neq 0$ and that $z \in \mathbb{R}^n$ has no zero components. If V is orthogonal such that $V^T(D + \rho z z^T)V = \text{diag}(\lambda_1, \dots, \lambda_n)$, with $\lambda_1 \ge \dots \lambda_n$ and $V = (v_1, \dots, v_n)$ then

a) The λ_i are the *n* zeros of $f(\lambda) = 1 + \rho z^T (D - \lambda I)^{-1} z$. b) The eigenvector v_i is a multiple of $(D - \lambda_i I)^{-1} z$.

Remark To find *V* we solve f(z) = 0, using e.g. Newtons Method, and find v_i by normalizing $(D - \lambda_i)^{-1}z$. Interlacing Theorem places one root in each interval (d_{i-1}, d_i) .

How to take advantage of this?

August 29, 2017 Sida 13/21

A Divide and Conquer Method

Lemma Let *T* be symmetric and tridiagonal. There is a *c*, $||c||_2 = 1$, such that

$$T = \left(egin{array}{cc} T_1 & 0 \ 0 & T_2 \end{array}
ight) +
ho cc^T,$$

where T_1 and T_2 are tridiagonal and ρ is a scalar.

Remark Given two Schur decompositions $Q_1^T T_1 Q_1 = D_1$ and $Q_2^T T_2 Q_2 = D_2$ we can combine

$$U^T T U = D + \rho z z^T$$
, $U = \text{diag}(Q_1, Q_2)$, $z = U^T c$.

Excellent for parallel implementation!

August 29, 2017 Sida 14/21

The singular value decomposition

Proposition Every matrix $A \in \mathbb{R}^{m \times n}$ has a decomposition

 $A = U\Sigma V^T,$

where U and V are orthogonal and $\Sigma \in \mathbb{R}^{m \times n}$ is *diagonal* with diagonal elements $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min(n,m)} \geq 0$.

Remark The diagonal elements $\{\sigma_i\}$ are called *singular values* and the columns $\{u_i\}$ of U and the columns $\{v_i\}$ of V are called right and left singular vectors.

Example Compute the SVD in Matlab by

Remark The matrix *A* has rank 2. *V* is 3×3 orthogonal.

Example Let $A \in \mathbb{R}^{4 \times 3}$. Then

$$A = \begin{pmatrix} u_1 & u_2 & u_3 & u_4 \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}^T.$$

Remark The vectors $\{u_i\}$ are a basis for \mathbb{R}^4 and the vectors $\{v_i\}$ are a basis for \mathbb{R}^3

August 29, 2017 Sida 17/21

Lemma Let $A \in \mathbb{R}^{m \times n}$ and $A = U\Sigma V^T$. it holds that $Av_i = \sigma_i u_i$ and $A^T u_i = \sigma_i v_i$, $i = 1, 2, ..., \min(m, n)$.

Lemma Let
$$A \in \mathbb{R}^{m \times n}$$
 and $A = U \Sigma V^T$. We can write

$$A = \sum_{i=1}^{\min(m,n)} \sigma_i u_i v_i^T.$$

A matrix $A \in \mathbb{R}^{m \times n}$ represents a *linear mapping*

 $A: \mathbb{R}^n \mapsto \mathbb{R}^m.$

Remark If $U = (u_1, ..., u_m) \in \mathbb{R}^{m \times m}$ is *orthogonal* then the set of vectors $\{u_i\}$ form an orthogonal basis for \mathbb{R}^m .

Observation In the basis U, V the linear mapping is represented by the diagonal matrix D.

August 29, 2017 Sida 18/21

Linear Systems of Equations

Lemma Let $A \in \mathbb{R}^{n \times n}$ be non-singular and $A = U\Sigma V^T$. Then the solution to the linear system Ax = b is given by

$$x = V\Sigma^{-1}U^T b = \sum_{i=1}^n \frac{u_i^T b}{\sigma_i} v_i.$$

Remarks The solution exists, i.e. *A* is non-singular, if $\sigma_n > 0$. If σ_n is very small the system is *Ill–conditioned*.

More expensive compared to using the LU factorization. Reveals linear dependencies among the columns of A.

Norms and the Condition Number

Recall If *U* is orthogonal and *x* is a vector then $||Ux||_2 = ||x||_2$.

Lemma The norm is $||A||_2 = \sigma_1$.

Corollary The condition number is $\kappa_2(A) = \frac{\sigma_1}{\sigma_n}$.

Remark Previously we used $||A||_2 = (\lambda_{\max}(A^T A))^{1/2}$. Since $A^T A = U \Sigma^T \Sigma U^T$ we get $\lambda_i (A^T A) = \sigma_i^2$.

August 29, 2017 Sida 21/21