The Singular Value Decomposition

- Definition. Computing the SVD.
- Fundamental subspaces. Linear Systems and Least Squares. Low rank approximation.

Applications

- Classification of handwritten digits.
- Total Least Squares.

Proposition Every matrix $A \in \mathbb{R}^{m \times n}$ has a decomposition

$$A = U\Sigma V^T,$$

where U and V are orthogonal and $\Sigma \in \mathbb{R}^{m \times n}$ is *diagonal* with diagonal elements $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_{\min(n,m)} \ge 0$

Remark The equivalent formula

$$A = \sum_{i=1}^{n} \sigma_i u_i v_i^{T}$$

writes *A* as a sum of rank one matrices.

August 9, 2017 Sida 2/29

August 9, 2017 Sida 1/29

Computing the SVD

Lemma Let $A = U\Sigma V^T \in \mathbb{R}^{m \times n}$. Then

 $A^{T}A = V(\Sigma^{T}\Sigma)V^{T}$, and $AA^{T} = U(\Sigma\Sigma^{T})U^{T}$.

So (σ_i^2, v_i) and (σ_i^2, u_i) are eigen pairs of $A^T A$ and $A A^T$.

Remark Suggests we can compute the SVD by solving either of two symmetric eigenvalue problems.

Question How to organize the computations efficiently?

Definition A matrix *B* is *upper bidiagonal* if $b_{ij} = 0$ unless j = i or j = i + 1.

Lemma If *B* is bidiagonal then BB^T and B^TB are tridiagonal.

Proposition Any matrix $A \in \mathbb{R}^{m \times n}$ can be reduced to bidiagonal form by $A = Q_1 B Q_2^T$, where Q_1 and Q_2 are orthogonal.

Reduction to bidiagonal form

Example Suppose *A* is a 5 × 4 matrix. First select a reflection such that $H_1A(1:5,1) = \alpha e_1$. Then

Next select a reflection such that $H_2A_2(1, 2: 4)^T = \alpha e_1$. Then

$$A_2 ilde{H}_2^T = egin{pmatrix} x & x & x \ 0 & x & x & x \ 0 & x & x & x \ 0 & x & x & x \ 0 & x & x & x \ 0 & x & x & x \ \end{pmatrix} ilde{H}_2^T = egin{pmatrix} x & + & 0 & 0 \ 0 & + & + & + \ 0 & + & + & + \ 0 & + & + & + \ 0 & + & + & + \ \end{pmatrix} = A_3.$$

August 9, 2017 Sida 5/29

The SVD Algorithm

The singular value decomposition is computed by

- Reduction to bidiagonal form $A = \overline{U}B\overline{V}^T$, \overline{U} and \overline{V} orthogonal.
- Apply the symmetric QR algorithm to B^TB or BB^T .

Golub and Kahan, 1965.

- Don't need to form $T = B^T B$ explicitly. The *QR* step (with shift) can be carried out by applying a sequence of Givens rotations to *B* directly.
- Many different algorithms for computing the SVD exists. Matlab has svd for dense matrices and svds for sparse matrices.

Proceed and find reflections $H_3A_3(2:5,2) = \alpha e_1$ and $H_4A_4(2,3:4)^T = \alpha e_1$,

$$\tilde{H}_{3}\left(\begin{array}{cccc} x & x & 0 & 0\\ 0 & x & x & x\\ 0 & x & x & x\\ 0 & x & x & x\\ 0 & x & x & x\end{array}\right)\tilde{H}_{4}^{T}=\left(\begin{array}{cccc} x & x & 0 & 0\\ 0 & + & + & +\\ 0 & 0 & + & +\\ 0 & 0 & + & +\end{array}\right)\tilde{H}_{4}^{T}=\left(\begin{array}{cccc} x & x & 0 & 0\\ 0 & x & + & 0\\ 0 & 0 & + & +\\ 0 & 0 & + & +\end{array}\right)$$

Finally apply reflections H_5 and H_6 to obtain

	$\int x$	x	0	0 \		$\int x$	x	0	0 \		$\int x$	x	0	0 \	
$\tilde{H}_6\tilde{H}_5$	0	x	х	0	$= ilde{H}_6$	0	х	x	0	=	0	x	x	0	=B.
	0	0	x	x		0	0	+	+		0	0	x	x	
	0	0	x	x		0	0	0	+		0	0	0	+	
	0 /	0	x	x /		0 /	0	0	+ /		0 /	0	0	0 /	

Have reached *bidiagonal form* after 2n - 2 Householder reflections.

August 9, 2017 Sida 6/29

The Fundamental Subspaces

Lemma If $\sigma_k > 0$ and $\sigma_{k+1} = 0$ then $\operatorname{Rank}(A) = k$.

Remark This means that

$$A = \sum_{i=1}^{k} \sigma_i u_i v_i^T.$$

Lemma If rank(A) = k then Range $(A) = \text{span}\{u_1, \ldots, u_k\}$.

Question How to write a basis for null(*A*)?

Lemma If rank(A) = k then null(A) = span{ v_{k+1}, \ldots, v_n }.

Example Let Ax = b. It is often useful to split x and b into components, e.g.

 $x = x_1 + x_2$, where $x_1 \in \text{null}(A)^{\perp}$ and $x_2 \in \text{null}(A)$.

Remark It holds that $A^T = V \Sigma U^T$ so range $(A)^{\perp} = \text{null}(A^T)$.

Lemma If $A \in \mathbb{R}^{m \times n}$ then Ax = b has a solution if $b \in \text{range}(A)$. The solution is unique if rank(A) = n.

Remark If rank(A) = k and $b \in range(A)$ then the general solution of Ax = b is

$$x = \sum_{i=1}^{k} \frac{u_i^T b}{\sigma_i} v_i + \sum_{i=k+1}^{n} c_i v_i.$$

where c_{k+1}, \ldots, c_n are undetermined parameters.

Question How to verify $b \in range(A)$?

August 9, 2017 Sida 10/29

August 9, 2017 Sida 9/29

Example In an application we have an 500×100 matrix *A* and want to solve a linear system Ax = b. Since *b* is obtained by measurements and we know the model is valid $b \in \text{range}(A)$.

Remark We see that $\sigma_{78} = 300.3492$ and $\sigma_{79} = 2.3 \cdot 10^{-10}$ so the rank is k = rank(A) = 78.

Results Solutions using x=A\b and x=Vk*inv(Sk)*Uk'*b.

After eliminating the small singular values the solution is very good.

Recall Let $A \in \mathbb{R}^{m \times n}$. Previously we defined $A^+ = (A^T A)^{-1} A^T$ and noted that $x = A^+ b$ is the vector that minimize $||Ax - b||_2$.

Definition If
$$A \in \mathbb{R}^{m \times n}$$
 and $\operatorname{rank}(A) = k$ then
$$A^{+} = \sum_{i=1}^{k} \frac{v_{i} u_{i}^{T}}{\sigma_{i}}.$$

Remark If rank(A) = n then $(A^T A)^{-1}$ exists and the new definition of A^+ coincides with the previous one.

August 9, 2017 Sida 13/29

Projections and the SVD

Lemma Suppose $V \in \mathbb{R}^{n \times k}$ has orthonormal columns. Then

 $P = VV^T$,

is an *orthogonal projection* onto range(V).

Example Suppose $A = U\Sigma V^T$ and rank(A) = k. Partition

$$U = (U_k, U_{m-k})$$
 and $V = (V_k, V_{n-k})$.

where, e.g, $U_k = (u_1, ..., u_k)$.

Question What is the orthogonal projection onto $(\operatorname{null}(A))^{\perp}$?

August 9, 2017 Sida 14/29

Application: Low rank approximation

Example Suppose that the decomposition $A = U\Sigma V^T$ is available and we want to compute the distance from *b* to the subspace range(*A*), i.e. find the minimum of $||Ax - b||_2$.

How should we organize the computations?

Theorem If
$$A \in \mathbb{R}^{m \times n}$$
 then

$$\min_{\text{rank}(B)=k} \|A - B\|_2 = \sigma_{k+1}, \quad B = \sum_{i=1}^k \sigma_i u_i v_i^T.$$

Remark If the number σ_n is small then A is close to rank deficient.

Definition Let $\varepsilon > 0$. The *numerical rank* of *A* is

$$\operatorname{rank}(A,\epsilon) = \max_{k} \{\sigma_k > \varepsilon\}.$$

Remark Let μ be the machine precision. If *A* has full rank but rank(*A*, μ) < *n* its likely better to treat *A* as rank deficient.

Suppose we study *objects* of a certain type and that objects occur in different variants, or *classes*. Given a new object we want to determine which class it belongs to.

- We collect a large *Reference set* $\{R_k\}$. That is objects of known class.
- Let *S* be unknown and R_k belong to the reference set. The *distance function* $d(S, R_k)$ measures the similarity between the two objects.

Example Incomming email can either be a spam mail or not.

August 9, 2017 Sida 18/29

August 9, 2017 Sida 17/29

Nearest Neighbour Classification

Algorithm Let $\{R_k\}$ be the reference set and $d(\cdot, \cdot)$ be the distance function. Do

1. Find k such that $d(S, R_k) = \min_i d(S, R_i)$.

2. The object *S* is of the same class as R_k .

Remark This method is simple, but very accurate assuming the reference set is large enough. It is also too inefficient for practical use.

A good distance function is needed.

Classification of Handwritten Digits

Example A *reference set* consists of n = 1707 digits taken from letters (postal codes). The images are stored as 16×16 pixels.

In Matlab DisplayDigit(RefSet(:,1));

Measure distance using Euclidean norm $||S - R_j||_2$.

Example The digit S_1 and its two nearest neighbours R_{11} and R_{303} .

This is a successful classification. Of the 20 nearest there are 18 nines and 2 sevens.

Of a (very difficult) *Test Set* of size 2007 a total of 92.8% are classified correctly. Objects are vectors in \mathbb{R}^{256} so have vector space structure.

August 9, 2017 Sida 21/29

Classification using Low-Rank approximation

Observation The reference set contains many examples of digits that are very similar.

Let $R^{(k)}$ be a matrix of size $256 \times n_k$ consisting of all reference digits of type k, k = 0, 1, ..., 9.

Approximation Compute $R^{(k)} = U^{(k)} \Sigma V^T$ and use

$$\operatorname{span}(R_1^{(k)},\ldots,R_{n_k}^{(k)})\approx\operatorname{span}(u_1^{(k)},\ldots,u_m^{(k)})$$

where *m* is the dimension of the subspace.

Remark A low dimension *m* is sufficient to accurately describe the most common variations in writing style.

```
August 9, 2017 Sida 22/29
```

Example The first 3 basis vectors $u_k^{(5)}$. Created from a total of 88 5:s from the reference set.

Just 5-10 basis vectors very accurately describe the digit 5 and its variations.

For each type of digit we find a low rank approximating subspace $U_m^{(k)} = \{u_1^{(k)}, \dots, u_m^{(k)}\}, k = 0, 1, \dots, 9.$

Algorithm Classify an unknown object S by 1. Find k such that $d(S, U_m^{(k)}) = \min_j d(S, U_m^{(j)})$. 2. The object S is of class k.

The distance $d(S, U^{(k)})$ is the distance from *S* to the subspace. This is a least squares problem. The matrices U_m^k has orthogonal columns.

Using subspaces of dimension m = 10 we classify 93.2% of the test set correctly. Bad reference digits are removed.

Example Suppose we have a set of points $\{x_i, y_i\}$ and want to find the best possible straight line y = ax + b to this set of data.

Observation A least squares model $y_i = c_0 + c_1 x_i$ would minimize the distances $|y_i - y|$. Treats y_i and x_i differently.

Can we find a method that treats x_i and y_i the same way? How should we proceed?

In the second case the *orthogonal distance* from the points (x_i, y_i) to the line $y = c_0 + c_1 x$ is minimized.

August 9, 2017 Sida 25/29

August 9, 2017 Sida 26/29

Definition The *Total least squares* solution x satisfies (A + E)x = b + r, where [E, r] is given by

 $\min \|[E, r]\|_2$ such that (A + E)x = b + r.

Remarks The solution always exists since E = -A and r = -b gives a trivial solution. It might not be unique.

Natural to assume errors in both A and b.

Have an over determined linear system Ax = b. How to compute the total least squares solution?

Algorithm Compute x_{TLS} by **1.** Compute $[A, b] = U\Sigma V^T$. Set $v_{n+1} = V(:, n+1)$. **2.** if $v_{n+1}(n+1) \neq 0$ then $x_{TLS} = -v_{n+1}(1:n)/v_{n+1}(n+1)$. end

Remark This is sometimes called *orthogonal distance regression*.

What happens if $v_{n+1}(n+1) = 0$? Not well understood.

Example Fit a straight line to n = 6 data points. (x_i, y_i) .

In Matlab

Regular least squares (left) and Total least squares (right).

August 9, 2017 Sida 29/29