TANA15/Lecture 8 - Contents

The singular value decomposition

Proposition Every matrix $A \in \mathbb{R}^{m \times n}$ has a decomposition

$$
A=U \Sigma V^{T}
$$

where U and V are orthogonal and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal with diagonal elements $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\min (n, m)} \geq 0$

- Definition. Computing the SVD.
- Fundamental subspaces. Linear Systems and Least Squares. Low rank approximation.

Applications

- Classification of handwritten digits.
- Total Least Squares.

Computing the SVD

Remark The equivalent formula

$$
A=\sum_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{T}
$$

writes A as a sum of rank one matrices.

Definition A matrix B is upper bidiagonal if $b_{i j}=0$
unless $j=i$ or $j=i+1$.
Lemma Let $A=U \Sigma V^{T} \in \mathbb{R}^{m \times n}$. Then

$$
A^{T} A=V\left(\Sigma^{T} \Sigma\right) V^{T}, \quad \text { and } \quad A A^{T}=U\left(\Sigma \Sigma^{T}\right) U^{T}
$$

So $\left(\sigma_{i}^{2}, v_{i}\right)$ and $\left(\sigma_{i}^{2}, u_{i}\right)$ are eigen pairs of $A^{T} A$ and $A A^{T}$.

Remark Suggests we can compute the SVD by solving either of two symmetric eigenvalue problems.

Question How to organize the computations efficiently?

Proposition Any matrix $A \in \mathbb{R}^{m \times n}$ can be reduced to bidiagonal form by $A=Q_{1} B Q_{2}^{T}$, where Q_{1} and Q_{2} are orthogonal.

Reduction to bidiagonal form

Example Suppose A is a 5×4 matrix. First select a reflection such that $H_{1} A(1: 5,1)=\alpha e_{1}$. Then

$$
\tilde{H}_{1} A=\tilde{H}_{1}\left(\begin{array}{cccc}
x & x & x & x \\
x & x & x & x
\end{array}\right)=\left(\begin{array}{cccc}
+ & + & + & + \\
0 & + & + & + \\
0 & + & + & + \\
0 & + & + & + \\
0 & + & + & +
\end{array}\right)=A_{2}
$$

Next select a reflection such that $H_{2} A_{2}(1,2: 4)^{T}=\alpha e_{1}$. Then

$$
A_{2} \tilde{H}_{2}^{T}=\left(\begin{array}{cccc}
x & x & x & x \\
0 & x & x & x
\end{array}\right) \tilde{H}_{2}^{T}=\left(\begin{array}{cccc}
x & + & 0 & 0 \\
0 & + & + & + \\
0 & + & + & + \\
0 & + & + & + \\
0 & + & + & +
\end{array}\right)=A_{3} .
$$

The SVD Algorithm

The singular value decomposition is computed by

- Reduction to bidiagonal form $A=\bar{U} B \bar{V}^{T}, \bar{U}$ and \bar{V} orthogonal.
- Apply the symmetric $Q R$ algorithm to $B^{T} B$ or $B B^{T}$.

Golub and Kahan, 1965.

- Don't need to form $T=B^{T} B$ explicitly. The $Q R$ step (with shift) can be carried out by applying a sequence of Givens rotations to B directly.
- Many different algorithms for computing the SVD exists. Matlab has svd for dense matrices and svds for sparse matrices.

Proceed and find reflections $H_{3} A_{3}(2: 5,2)=\alpha e_{1}$ and

$H_{4} A_{4}(2,3: 4)^{T}=\alpha e_{1}$,
$\tilde{H}_{3}\left(\begin{array}{llll}x & x & 0 & 0 \\ 0 & x & x & x \\ 0 & x & x & x \\ 0 & x & x & x \\ 0 & x & x & x\end{array}\right) \tilde{H}_{4}^{T}=\left(\begin{array}{cccc}x & x & 0 & 0 \\ 0 & + & + & + \\ 0 & 0 & + & + \\ 0 & 0 & + & + \\ 0 & 0 & + & +\end{array}\right) \tilde{H}_{4}^{T}=\left(\begin{array}{cccc}x & x & 0 & 0 \\ 0 & x & + & 0 \\ 0 & 0 & + & + \\ 0 & 0 & + & + \\ 0 & 0 & + & +\end{array}\right)$

Finally apply reflections H_{5} and H_{6} to obtain
$\tilde{H}_{6} \tilde{H}_{5}\left(\begin{array}{cccc}x & x & 0 & 0 \\ 0 & x & x & 0 \\ 0 & 0 & x & x \\ 0 & 0 & x & x \\ 0 & 0 & x & x\end{array}\right)=\tilde{H}_{6}\left(\begin{array}{cccc}x & x & 0 & 0 \\ 0 & x & x & 0 \\ 0 & 0 & + & + \\ 0 & 0 & 0 & + \\ 0 & 0 & 0 & +\end{array}\right)=\left(\begin{array}{cccc}x & x & 0 & 0 \\ 0 & x & x & 0 \\ 0 & 0 & x & x \\ 0 & 0 & 0 & + \\ 0 & 0 & 0 & 0\end{array}\right)=B$

Have reached bidiagonal form after $2 n-2$ Householder reflections.

The Fundamental Subspaces

$$
\text { Lemma If } \sigma_{k}>0 \text { and } \sigma_{k+1}=0 \text { then } \operatorname{Rank}(A)=k .
$$

Remark This means that

$$
A=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}
$$

Lemma If $\operatorname{rank}(A)=k$ then Range $(A)=\operatorname{span}\left\{u_{1}, \ldots, u_{k}\right\}$.

Question How to write a basis for $\operatorname{null}(A)$?

Lemma If $\operatorname{rank}(A)=k$ then $\operatorname{null}(A)=\operatorname{span}\left\{v_{k+1}, \ldots, v_{n}\right\}$.

Example Let $A x=b$. It is often useful to split x and b into components, e.g.

$$
x=x_{1}+x_{2}, \quad \text { where } \quad x_{1} \in \operatorname{null}(A)^{\perp} \text { and } x_{2} \in \operatorname{null}(A) .
$$

Remark It holds that $A^{T}=V \Sigma U^{T}$ so range $(A)^{\perp}=\operatorname{null}\left(A^{T}\right)$.

Example In an application we have an 500×100 matrix A and want to solve a linear system $A x=b$. Since b is obtained by measurements and we know the model is valid $b \in \operatorname{range}(A)$.

In Matlab Compute the SVD and plot the singular values and also the coefficients $\left|u_{i}^{T} b\right|$.

Remark We see that $\sigma_{78}=300.3492$ and $\sigma_{79}=2.3 \cdot 10^{-10}$ so the rank is $k=\operatorname{rank}(A)=78$.

Lemma If $A \in \mathbb{R}^{m \times n}$ then $A x=b$ has a solution if $b \in \operatorname{range}(A)$. The solution is unique if $\operatorname{rank}(A)=n$.

Remark If $\operatorname{rank}(A)=k$ and $b \in \operatorname{range}(A)$ then the general solution of $A x=b$ is

$$
x=\sum_{i=1}^{k} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i}+\sum_{i=k+1}^{n} c_{i} v_{i}
$$

where c_{k+1}, \ldots, c_{n} are undetermined parameters.

Question How to verify $b \in \operatorname{range}(A)$?

Results Solutions using $x=A \backslash b$ and $x=V k * i n v(S k) * \mathrm{Uk}^{\prime} * \mathrm{~b}$.
After eliminating the small singular values the solution is very good.

The Pseudo Inverse and Least squares problems

Projections and the SVD

Recall Let $A \in \mathbb{R}^{m \times n}$. Previously we defined $A^{+}=\left(A^{T} A\right)^{-1} A^{T}$ and noted that $x=A^{+} b$ is the vector that minimize $\|A x-b\|_{2}$.

Definition If $A \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A)=k$ then

$$
A^{+}=\sum_{i=1}^{k} \frac{v_{i} u_{i}^{T}}{\sigma_{i}} .
$$

Remark If $\operatorname{rank}(A)=n$ then $\left(A^{T} A\right)^{-1}$ exists and the new definition of A^{+}coincides with the previous one.

Lemma Suppose $V \in \mathbb{R}^{n \times k}$ has orthonormal columns. Then

$$
P=V V^{T},
$$

is an orthogonal projection onto range (V).

Example Suppose $A=U \Sigma V^{T}$ and $\operatorname{rank}(A)=k$. Partition

$$
U=\left(U_{k}, U_{m-k}\right) \quad \text { and } \quad V=\left(V_{k}, V_{n-k}\right)
$$

where, e.g, $U_{k}=\left(u_{1}, \ldots, u_{k}\right)$.
Question What is the orthogonal projection onto $(\operatorname{null}(A))^{\perp}$?

Application: Low rank approximation

Example Suppose that the decomposition $A=U \Sigma V^{T}$ is available and we want to compute the distance from b to the subspace range (A), i.e. find the minimum of $\|A x-b\|_{2}$.

How should we organize the computations?

Theorem If $A \in \mathbb{R}^{m \times n}$ then

$$
\min _{\operatorname{rank}(B)=k}\|A-B\|_{2}=\sigma_{k+1}, \quad B=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T} .
$$

Definition Let $\varepsilon>0$. The numerical rank of A is

$$
\operatorname{rank}(A, \epsilon)=\max _{k}\left\{\sigma_{k}>\varepsilon\right\}
$$

Remark Let μ be the machine precision. If A has full rank but $\operatorname{rank}(A, \mu)<n$ its likely better to treat A as rank deficient.

Nearest Neighbour Classification

Algorithm Let $\left\{R_{k}\right\}$ be the reference set and $d(\cdot, \cdot)$ be the distance function. Do

1. Find k such that $d\left(S, R_{k}\right)=\min _{j} d\left(S, R_{j}\right)$.
2. The object S is of the same class as R_{k}.

Remark This method is simple, but very accurate assuming the

 reference set is large enough. It is also too inefficient for practical use.A good distance function is needed.

Suppose we study objects of a certain type and that objects occur in different variants, or classes. Given a new object we want to determine which class it belongs to.

- We collect a large Reference set $\left\{R_{k}\right\}$. That is objects of known class.
- Let S be unknown and R_{k} belong to the reference set. The distance function $d\left(S, R_{k}\right)$ measures the similarity between the two objects.

Example Incomming email can either be a spam mail or not.

Classification of Handwritten Digits

Example A reference set consists of $n=1707$ digits taken from letters (postal codes). The images are stored as 16×16 pixels.

In Matlab DisplayDigit(RefSet (:, 1));

Example The digit S_{1} and its two nearest neighbours R_{11} and R_{303}.

This is a successful classification. Of the 20 nearest there are 18 nines and 2 sevens.

Of a (very difficult) Test Set of size 2007 a total of 92.8% are classified correctly. Objects are vectors in \mathbb{R}^{256} so have vector space structure.

Example The first 3 basis vectors $u_{k}^{(5)}$. Created from a total of 88 5:s from the reference set.

Just 5-10 basis vectors very accurately describe the digit 5 and its variations.

Classification using Low-Rank approximation

Observation The reference set contains many examples of digits that are very similar.

Let $R^{(k)}$ be a matrix of size $256 \times n_{k}$ consisting of all reference digits of type $k, k=0,1, \ldots, 9$.

Approximation Compute $R^{(k)}=U^{(k)} \Sigma V^{T}$ and use

$$
\operatorname{span}\left(R_{1}^{(k)}, \ldots, R_{n_{k}}^{(k)}\right) \approx \operatorname{span}\left(u_{1}^{(k)}, \ldots, u_{m}^{(k)}\right)
$$

where m is the dimension of the subspace.

Remark A low dimension m is sufficient to accurately describe the most common variations in writing style.

For each type of digit we find a low rank approximating subspace $U_{m}^{(k)}=\left\{u_{1}^{(k)}, \ldots, u_{m}^{(k)}\right\}, k=0,1, \ldots, 9$.

Algorithm Classify an unknown object S by

1. Find k such that $d\left(S, U_{m}^{(k)}\right)=\min _{j} d\left(S, U_{m}^{(j)}\right)$.
2. The object S is of class k.

The distance $d\left(S, U^{(k)}\right)$ is the distance from S to the subspace. This is a least squares problem. The matrices U_{m}^{k} has orthogonal columns.

Using subspaces of dimension $m=10$ we classify 93.2% of the test set correctly. Bad reference digits are removed.

Total least squares

Example Suppose we have a set of points $\left\{x_{i}, y_{i}\right\}$ and want to find the best possible straight line $y=a x+b$ to this set of data.

Observation A least squares model $y_{i}=c_{0}+c_{1} x_{i}$ would minimize the the distances $\left|y_{i}-y\right|$. Treats y_{i} and x_{i} differently.

Can we find a method that treats x_{i} and y_{i} the same way? How should we proceed?

Definition The Total least squares solution x satisfies $(A+E) x=b+r$, where $[E, r]$ is given by

$$
\min \|[E, r]\|_{2} \text { such that }(A+E) x=b+r .
$$

Remarks The solution always exists since $E=-A$ and $r=-b$ gives a trivial solution. It might not be unique.

Natural to assume errors in both A and b.

In the second case the orthogonal distance from the points $\left(x_{i}, y_{i}\right)$ to the line $y=c_{0}+c_{1} x$ is minimized.

Have an over determined linear system $A x=b$. How to compute the total least squares solution?

```
Algorithm Compute }\mp@subsup{x}{TLS}{}\mathrm{ by
    1. Compute [A,b]=U\Sigma\mp@subsup{V}{}{T}\mathrm{ . Set }\mp@subsup{v}{n+1}{}=V(:,n+1).
    2. if }\mp@subsup{v}{n+1}{}(n+1)\not=0\mathrm{ then
        x}\mp@subsup{x}{TS}{}=-\mp@subsup{v}{n+1}{}(1:n)/\mp@subsup{v}{n+1}{}(n+1)
    end
```

Remark This is sometimes called orthogonal distance regression.

What happens if $v_{n+1}(n+1)=0$? Not well understood.

Example Fit a straight line to $n=6$ data points. $\left(x_{i}, y_{i}\right)$.

In Matlab

$\gg A=[x . \wedge 0, x . \wedge 1] ;[U, S, V]=s v d([A, Y]) ;$
>> x_LS=A $\backslash y$;
>> $x _T L S=-V(1: 2,3) / V(3,3)$;

Regular least squares (left) and Total least squares (right).

