TANA15/Lecture 9 - Contents Integral Equations

Definition An integral operator K : f — g can be written

b
gawi/k@ﬂvwmm

The Singular Value Decomposition

o Integral Equations. where k(x, x') is the kernel.
o Application: Remote Sensing.

Sparse Matrices

o Compress Sparse Row storage. Remark The operator maps f(x) € X onto g(x) € ) where X’ and )
o Stationary Iterative methods. are suitable function spaces. Usually C()([a, b]), CV)([a, b)),
L?([a, b)), etc.

The spaces can be equipped with a scalar product

b
(fl,fz)Z/ Ffi(x)f (x)dx.
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Method By Discretization we mean replacing functions by vectors,

ie.
Definition An operator is linear if fx) =f= (1), fx2), ..., fx) € R
K(aifi + aop) = a1 Kfi + auKp, The operator is discretized using the collocation method
n
for all fi, > in X and o, € R. b—a )
fife a2 N
=

We get Kf = g, where K € R"*". The scalar product (fj, f2) is also

Lemma The integal operator X is linear. discretized

(fi.fo) = %Zfl (o )ff (i)
i=1

Remark Operators on function spaces are studied in Functional
analysis. How to turn this into Linear algebra? Remark The function f(x) can be recreated from the vector f using
an interpolation scheme.
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Remote Sensing: Temperature Measurements

_ Lemma The operator mapping () =7(0, ¢) onto the
Thick wall measurements g(¢) = T(1,1) is

N : exp(—4)
s =)0 = [ Ke-rIf(r)ar, k)= T3,
Hot gas hermocouple o 203/2\ /7
or
liquid
Discretize Use a grid 0 = fp<t; <...<t,—; = 1 to approximate the
operator equation (Kf)(t) =g(t) by a linear system
H— g=K,f, K, € R™",
01 X
Idea Given a vector g, € R” containing (noisy) measurements we
Problem Find /() =T(0, t) using measurements g, (t) ~T(1,1). solve the linear system K, f = gm.
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Analysis Compute K, = UX V. Plot the singular values {0y }.
Example Collect n =128 noisy measurements in a vector g,, and

attempt to compute f, = K, g,

m

Temperature G_(t)
Temperature (1)
5

o o1 0z 03

04 05 os 0 05 06
Time t[s] Time t[s]

The data vector g, (left) and the numerical solution f. to the linear Results The singular values decrease from o; ~ 0.36 continuously to
system of equations. The problem is very ill-contitioned! 0124 = 5.6 - 1078, The last 4 singular values are much smaller than
the others. The problem is very ill-conditioned!
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The basis functions vi25 and vi26. Those components of f(¢) are The basis functions voo and uyg. The corresponding singular value is

multiplied by o125 = 3.1 - 1072 and 055 = 5.9 - 1072 respectively. 020 = 3.6 - 1073, There is damping of high frequency components.
The operator K is smoothing!

Conclusion There is a time delay in the problem. The signal f(¢) for ¢

close to 1 doesn’t have time to propagate through the medium and Conclusion Suppose the measurement errors are at most ¢ = 1072
influence the measurement location g(7). These components must be then only the first k = 12 (o1 = 0.0129), or at most k = 15 (
removed from the problem! o12 = 0.0077), components g,fluk = oxfT vy are above the noise level.
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Numerical Solutions We include k = 5 or k = 25 components.

Time t
Time t

im
Time t

o 0.1 02 03 04 05 06 07 08 0 0 01 02 03 04 05 06 07 08 09 1
Temperature F ,, Temperature £ -2

Numerical solution We include k£ = 12 and k = 15 components in » *
k T P g Temperature F,g
(k) o uj gm
Y= Vj
: gj
j=1

Remark Too few components and we miss features. Too many and

the solution is mostly noise.
Remark Both solutions are fairly similar. Only the components we

belive to be accurate are included!
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Application: Surface temperature on a steel roll

Example A steel roll of radius R3 has been fitted with thermocouples
at r = R,. The interior of the roll is at » = R;. Initially the roll is at a
constant temperature. Find the transient surface temperature
T(x,R3,t) = f(x, 1) using measurements 7 (x, Ry, 1) = g(x,1).

Temperature F(t)

Model The temperature in the steel roll T'(x, r, ¢) satisfies

4
0 o1 02 03 04 05 06 07 08 09
Time t[s]

(kTy)x + L(rkT,), = pc, Ty, in (a,b) X (0,%ena) % (R1,R3),
T(X, R37 t) :.f(xa t):

The best numerical uses k = 12 singular components. Also the exact kT, (x,r,t) =0, for r = Ry,
solution of the problem f(¢). Good accuracy except for the last 5 grid Ty(x,r,t) =0, for x=a, orx = b,
points. T(x,r,0) =f(x,0), on (L1, L) x (Ry,R3) x {0},

Remark The SVD can reveal alot of information regarding a linear where f(x, 0) is a constant function so T'(x, r) is also constant.

system of equations!
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Sparse Matrices

Observation In applications often matrices are sparse, i.e. most
Lemma The mapping K : f(x,t) — g(x,) is linear. elements a; = 0.

To store the full matrix A still requires n? slots of memory and a

. matrix—vector multiply,
Remark If we introduce a scalar product
n

b Tend _ J— v
(i f2) = / / £ (6, 1)/ (r, 1), y=As o vi=) a;
x=a J =0

j=1
then we can use the singular value decomposition. still requires 2n” floating point operations.
Observation If we discretize K using n=100 grid points in x and Idea Store only the non—zero elements a;; # 0. Implement
m=200 in ¢ then the matrix K" is of dimension nm=2 - 10*. Its not matrix—vector multiply so only need nnz (A) floating point

feasible to compute the SVD. Alternative? operations.

Can store larger matrices and have a faster matrix—vector multiply!
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Sparse Matrix Storage Schemes

Example Suppose the full matrix is

11 0 0 37 O 0 0 -12 0 O
0O 12 0 O 0 43 0 0 -19 0
A= 0O 0 21 O 0 0 0 -18 0 O
o o0 0 O 0 0 0 O 0 0
0 31 0 0 —-15 O 0 O 0 0

The elements of the matrix A is stored using three vectors

Elements=(1.1,3.7,-1.2,1.2,43, -1.9,2.1,-1.8,3.1,—1.5)
ColumnIndex =(1,4,8,2,6,9,3,8,2,5)
RowEndIndex = (3,6, 8,38, 10)

Matlab S=sparse (2) . This is called Compress Sparse Row.
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Origin of Sparse Matrices

Example Let Q = [0, 1] x [0, 1] and suppose we want to solve the
boundary value problem,

Au=0, in€, and, u= gond.
We discreize € using a uniform mesh
(xi,¥i) = (iAx,jAYy), 0<ij<N-1.
The differential equation is approximated by,
Wij—1 + i1+ uip1j + uijr — 4ui; =0, 1<ij<N-2.
We obtain an N? x N? matrix A with 5 non-zero elements on each row!

Typically want to use as large N as possible.
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Sparse Matrix Operations

Suppose A is a sparse matrix stored in the CSR format and that
1 = nnz(A) is the number of non-zero elements of A.

Lemma Storing a matrix in CSR format requires O(n)
slots of memory and a matrix—vector multiply y = Ax
uses O(n) operations.

Remark Matrix—Matrix multiply C = AB should be avoided since the
C usually isn’t sparse.

Strongly favours iterative methods that only use matrix-vector
multiply y=Ax, and often y=A”x. Solve linear systems, compute
eigenvalues, etc.
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L

Example A finite element model and the resulting stiffness matrix.
Here a; j is non-zero only if nodes N; and N; are neighbours.
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Classic Iterative Methods

Example An iterative method for computing an eigenvalue is the
power method.

Let A be a sparse matrix. We want to solve the linear system,

Algorithm Take ¢(¥ such that ||¢(® ||, = 1. For Ax = b.
k=1,2,...,do

wk) — Aq(k—1)7
q(k) - w(k)/||w(k)||2'

Definition An iterative method creates a sequence {xy }
given a starting approximation xo. The method is
convergent if x; — x, as k — oo.

Then (px, g™®)) converges to the eigenpair (A, x1).

Remark Efficient use of sparsity if the next iterate x;y; is created

L , , from x; using matrix—vector multiplications y = Ax or y = A”x.
Remark The power-iteration only uses matrix-vector multiply to k g P Y Y

compute eigenvalues and eigenvectors.
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Jacobis Method Stationary Iterative Methods

Let x be the solution of the linear system. Then the ith component of

the residual b — Axis Lemma Let A = M — N be a splitting. A solution of

; ; Ax = b is a fixed point to the iteration
1 (k1) — ag—1p74(K) =i
bl‘ — Z a[ijIO, or, X;=— b,‘ — z aiiXi | - % M~ Nx +M"b.

@
J=1 ! =1

Example Let M =D =diag(A) and N=A — M. Then
Given a starting approximation x(?) we solve using fixed point +®) — p-1 (D—A) x® & D1p is the Jacobi method.

iteration to obtain,

1
xl(kﬂ) =— | b — Z a,-jx(k) , i=1,...,n. Lemma The iteration x**1) = Gx®) + ¢ is convergent if
J=Lj# p(G) < 1.

This is called Jacobis method.
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Example - Jacobi Iteration

Definition A matrix A is diagonally dominant it C . .
reate a linear system of equations
n
|al'l'|Z Z |aij|7 i:1,2,...,l’l,
=Tk > A=[3 100 ; -1 210; 0-2231;00 -2 2];
>> x=ones (4,1) ;b=A*x;
with strict inequality for at least one i. >> A
A =
3 1 0 0
-1 2 1 0
Theorem If A is diagonally dominant then the Jacobi 8 _[2) ;’ ;

iteration is convergent.

The matrix A is diagonally dominant.

Remark Matrices obtained by discratizing PDEs are usually

diagonally dominant. The Jacobi iteraton is x¢+1 = Gx + ¢, where G = D~!(D — A).
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Lemma The Landweber iteration,

(D = X0 4 AT (b — Ax0),

Error || x *x|| ,

is convergent if 0 < w < 2/0?.

Iteration number k

Remark If the Landweber iteration converges then AT (b — Ax*) = 0
so we have the least squares solution.

The convergence history ||x(*) — x|, (blue) for the Jacobi Iteration.

Also theoretical convergence curve || RONS x|[2p(G)F (red). The convergence is linear. We need faster methods.

Remark This is very slow convergence.
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