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The Singular Value Decomposition

Integral Equations.

Application: Remote Sensing.

Sparse Matrices

Compress Sparse Row storage.

Stationary Iterative methods.

August 29, 2017 Sida 1 / 1

Integral Equations

Definition An integral operator K : f 7→ g can be written

g(x) =

∫ b

a

k(x, x′)f (x′)dx′,

where k(x, x′) is the kernel.

Remark The operator maps f (x) ∈ X onto g(x) ∈ Y where X and Y
are suitable function spaces. Usually C(0)([a, b]), C(1)([a, b]),
L2([a, b]), etc.

The spaces can be equipped with a scalar product

(f1, f2) =

∫ b

a

f1(x)f2(x)dx.
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Definition An operator is linear if

K(α1f1 + α2f2) = α1Kf1 + α2Kf2,

for all f1, f2 in X and α1,α2 ∈ R.

Lemma The integal operator K is linear.

Remark Operators on function spaces are studied in Functional

analysis. How to turn this into Linear algebra?
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Method By Discretization we mean replacing functions by vectors,

i.e.

f (x) =⇒ f = (f (x1) , f (x2) , . . . , f (xn))
T ∈ R

n.

The operator is discretized using the collocation method

g(xj) =
b − a

n

n
∑

i=1

k(xj, x′i)f (x
′
i), j = 1, 2, . . . , n.

We get Kf = g, where K ∈ R
n×n. The scalar product (f1, f2) is also

discretized

(f1, f2) =
1

n

n
∑

i=1

f1(xi)ff (xi).

Remark The function f (x) can be recreated from the vector f using

an interpolation scheme.
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Remote Sensing: Temperature Measurements

Thermocouple
Hot gas
or

liquid

Thick wall

0 1 x

Problem Find f (t)=T(0, t) using measurements gm(t)≈T(1, t).
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Lemma The operator mapping f (t)=T(0, t) onto the

measurements g(t) = T(1, t) is

g(t)=(Kf )(t)=

∫ t

0

k(t−τ)f (τ)dτ, k(t)=
exp(− 1

4t
)

2t3/2
√
π
.

Discretize Use a grid 0 = t0< t1 <. . .< tn−1 = 1 to approximate the

operator equation (Kf )(t)=g(t) by a linear system

g = Kn f , Kn ∈ R
n×n.

Idea Given a vector gm ∈ R
n containing (noisy) measurements we

solve the linear system Kn f = gm.
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Example Collect n=128 noisy measurements in a vector gm and

attempt to compute fc = K−1
n gm.
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The data vector gm (left) and the numerical solution fc to the linear

system of equations. The problem is very ill–contitioned!
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Analysis Compute Kn = UΣVT . Plot the singular values {σk}.
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Results The singular values decrease from σ1 ≈ 0.36 continuously to

σ124 ≈ 5.6 · 10−8. The last 4 singular values are much smaller than

the others. The problem is very ill-conditioned!
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The basis functions v125 and v126. Those components of f (t) are

multiplied by σ125 = 3.1 · 10−21 and σ125 = 5.9 · 10−24 respectively.

Conclusion There is a time delay in the problem. The signal f (t) for t

close to 1 doesn’t have time to propagate through the medium and

influence the measurement location g(t). These components must be

removed from the problem!
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The basis functions v20 and u20. The corresponding singular value is

σ20 = 3.6 · 10−3. There is damping of high frequency components.

The operator K is smoothing!

Conclusion Suppose the measurement errors are at most ε = 10−2

then only the first k = 12 (σ12 = 0.0129), or at most k = 15 (

σ12 = 0.0077), components gT
muk = σkf T vk are above the noise level.
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Numerical solution We include k = 12 and k = 15 components in

f (k) =

k
∑

j=1

uT
j gm

σj

vj.

Remark Both solutions are fairly similar. Only the components we

belive to be accurate are included!
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Numerical Solutions We include k = 5 or k = 25 components.
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Remark Too few components and we miss features. Too many and

the solution is mostly noise.

August 29, 2017 Sida 12 / 1



Temperature F
12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e 
t

-4

-2

0

2

4

6

8

Time t [s]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
em

pe
ra

tu
re

 F
(t

)

-4

-2

0

2

4

6

8

The best numerical uses k = 12 singular components. Also the exact

solution of the problem f (t). Good accuracy except for the last 5 grid

points.

Remark The SVD can reveal alot of information regarding a linear

system of equations!
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Application: Surface temperature on a steel roll

Example A steel roll of radius R3 has been fitted with thermocouples

at r = R2. The interior of the roll is at r = R1. Initially the roll is at a

constant temperature. Find the transient surface temperature

T(x,R3, t) = f (x, t) using measurements T(x,R2, t) = g(x, t).

Model The temperature in the steel roll T(x, r, t) satisfies























(kTx)x +
1
r
(rkTr)r = ρcpTt, in (a, b) × (0, tend)× (R1,R3),

T(x,R3, t) = f (x, t),
kTr(x, r, t) = 0, for r = R1,
Tx(x, r, t) = 0, for x= a, or x = b,
T(x, r, 0) = f (x, 0), on (L1,L2)× (R0,R3)× {0},

where f (x, 0) is a constant function so T(x, r) is also constant.
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Lemma The mapping K : f (x, t) 7→ g(x, t) is linear.

Remark If we introduce a scalar product

(f1, f2) =

∫ b

x=a

∫ tend

t=0

f1(x, t)f2(x, t)dxdt,

then we can use the singular value decomposition.

Observation If we discretize K using n=100 grid points in x and

m=200 in t then the matrix K(nm) is of dimension nm=2 · 104. Its not

feasible to compute the SVD. Alternative?
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Sparse Matrices

Observation In applications often matrices are sparse, i.e. most

elements aij = 0.

To store the full matrix A still requires n2 slots of memory and a

matrix–vector multiply,

y = Ax, yi =

n
∑

j=1

aijxj,

still requires 2n2 floating point operations.

Idea Store only the non–zero elements aij 6= 0. Implement

matrix–vector multiply so only need nnz(A) floating point

operations.

Can store larger matrices and have a faster matrix–vector multiply!
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Sparse Matrix Storage Schemes

Example Suppose the full matrix is

A=













1.1 0 0 3.7 0 0 0 −1.2 0 0

0 1.2 0 0 0 4.3 0 0 −1.9 0

0 0 2.1 0 0 0 0 −1.8 0 0

0 0 0 0 0 0 0 0 0 0

0 3.1 0 0 −1.5 0 0 0 0 0













The elements of the matrix A is stored using three vectors

Elements= (1.1, 3.7,−1.2, 1.2, 4.3,−1.9, 2.1,−1.8, 3.1,−1.5)

ColumnIndex = (1 , 4 , 8 , 2 , 6 , 9 , 3 , 8 , 2 , 5)

RowEndIndex = (3 , 6 , 8 , 8 , 10)

Matlab S=sparse(A). This is called Compress Sparse Row.
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Sparse Matrix Operations

Suppose A is a sparse matrix stored in the CSR format and that

η = nnz(A) is the number of non-zero elements of A.

Lemma Storing a matrix in CSR format requires O(η)
slots of memory and a matrix–vector multiply y = Ax

uses O(η) operations.

Remark Matrix–Matrix multiply C = AB should be avoided since the

C usually isn’t sparse.

Strongly favours iterative methods that only use matrix-vector

multiply y=Ax, and often y=ATx. Solve linear systems, compute

eigenvalues, etc.
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Origin of Sparse Matrices

Example Let Ω = [0, 1] × [0, 1] and suppose we want to solve the

boundary value problem,

∆u = 0, in Ω, and, u = g on ∂Ω.

We discreize Ω using a uniform mesh

(xi, yj) = (i∆x, j∆y), 0 ≤ i, j ≤ N − 1.

The differential equation is approximated by,

ui,j−1 + ui−1,j + ui+1,j + ui,j+1 − 4ui,j = 0, 1 ≤ i, j ≤ N − 2.

We obtain an N2×N2 matrix A with 5 non-zero elements on each row!

Typically want to use as large N as possible.
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Example A finite element model and the resulting stiffness matrix.

Here ai,j is non-zero only if nodes Ni and Nj are neighbours.
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Example An iterative method for computing an eigenvalue is the

power method.

Algorithm Take q(0) such that ‖q(0)‖2 = 1. For

k = 1, 2, . . . , do

w(k) = Aq(k−1),

ρk−1 = (q(k−1))T w(k),

q(k) = w(k)/‖w(k)‖2.

Then (ρk, q(k)) converges to the eigenpair (λ1, x1).

Remark The power-iteration only uses matrix-vector multiply to

compute eigenvalues and eigenvectors.
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Classic Iterative Methods

Let A be a sparse matrix. We want to solve the linear system,

Ax = b.

Definition An iterative method creates a sequence {xk}
given a starting approximation x0. The method is

convergent if xk → x, as k → ∞.

Remark Efficient use of sparsity if the next iterate xk+1 is created

from xk using matrix–vector multiplications y = Ax or y = ATx.
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Jacobis Method

Let x be the solution of the linear system. Then the ith component of

the residual b − Ax is

bi −
n

∑

j=1

aijxj=0, or, xi =
1

aii



bi −
n

∑

j=1,j6=i

aijxj



 .

Given a starting approximation x(0) we solve using fixed point

iteration to obtain,

x
(k+1)
i =

1

aii



bi −
n

∑

j=1,j6=i

aijx
(k)
j



 , i = 1, . . . , n.

This is called Jacobis method.
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Stationary Iterative Methods

Lemma Let A = M − N be a splitting. A solution of

Ax = b is a fixed point to the iteration

x(k+1) = M−1Nx(k) + M−1b.

Example Let M=D=diag(A) and N=A − M. Then

x(k) = D−1(D − A)x(k) + D−1b is the Jacobi method.

Lemma The iteration x(k+1) = Gx(k) + c is convergent if

ρ(G) < 1.
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Definition A matrix A is diagonally dominant if

|aii| ≥
n

∑

j=1,j6=i

|aij|, i = 1, 2, . . . , n,

with strict inequality for at least one i.

Theorem If A is diagonally dominant then the Jacobi

iteration is convergent.

Remark Matrices obtained by discratizing PDEs are usually

diagonally dominant.
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Example - Jacobi Iteration

Create a linear system of equations

>> A=[3 1 0 0 ; -1 2 1 0 ; 0 -2 3 1;0 0 -2 2];

>> x=ones(4,1);b=A*x;

>> A

A =

3 1 0 0

-1 2 1 0

0 -2 3 1

0 0 -2 2

The matrix A is diagonally dominant.

The Jacobi iteraton is xk+1 = Gxk + c, where G = D−1(D − A).
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The convergence history ‖x(k) − x‖2 (blue) for the Jacobi Iteration.

Also theoretical convergence curve ‖x(0) − x‖2ρ(G)k (red).

Remark This is very slow convergence.
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Lemma The Landweber iteration,

x(k+1) = x(k) + ωAT(b − Ax(k)),

is convergent if 0 < ω < 2/σ2
1 .

Remark If the Landweber iteration converges then AT(b − Ax∗) = 0

so we have the least squares solution.

The convergence is linear. We need faster methods.
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