TANA15/Lecture 9 - Contents

Integral Equations

The Singular Value Decomposition

Integral Equations.

- Application: Remote Sensing.

Sparse Matrices

- Compress Sparse Row storage
- Stationary Iterative methods.
where $k\left(x, x^{\prime}\right)$ is the kernel.

Definition An integral operator $K: f \mapsto g$ can be written

$$
g(x)=\int_{a}^{b} k\left(x, x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime}
$$

Remark The operator maps $f(x) \in \mathcal{X}$ onto $g(x) \in \mathcal{Y}$ where \mathcal{X} and \mathcal{Y} are suitable function spaces. Usually $C^{(0)}([a, b]), C^{(1)}([a, b])$,
$L^{2}([a, b])$, etc.

The spaces can be equipped with a scalar product

$$
\left(f_{1}, f_{2}\right)=\int_{a}^{b} f_{1}(x) f_{2}(x) d x
$$

Method By Discretization we mean replacing functions by vectors, i.e.

$$
f(x) \Longrightarrow f=\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right)^{T} \in \mathbb{R}^{n}
$$

The operator is discretized using the collocation method

$$
g\left(x_{j}\right)=\frac{b-a}{n} \sum_{i=1}^{n} k\left(x_{j}, x_{i}^{\prime}\right) f\left(x_{i}^{\prime}\right), \quad j=1,2, \ldots, n
$$

We get $K f=g$, where $K \in \mathbb{R}^{n \times n}$. The scalar product $\left(f_{1}, f_{2}\right)$ is also discretized

$$
\left(f_{1}, f_{2}\right)=\frac{1}{n} \sum_{i=1}^{n} f_{1}\left(x_{i}\right) f_{f}\left(x_{i}\right)
$$

Remark The function $f(x)$ can be recreated from the vector f using an interpolation scheme.

Remote Sensing: Temperature Measurements

Thick wall

Problem Find $f(t)=T(0, t)$ using measurements $g_{m}(t) \approx T(1, t)$.

Example Collect $n=128$ noisy measurements in a vector g_{m} and attempt to compute $f_{c}=K_{n}^{-1} g_{m}$.

The data vector g_{m} (left) and the numerical solution f_{c} to the linear system of equations. The problem is very ill-contitioned!

Lemma The operator mapping $f(t)=T(0, t)$ onto the measurements $g(t)=T(1, t)$ is

$$
g(t)=(K f)(t)=\int_{0}^{t} k(t-\tau) f(\tau) d \tau, \quad k(t)=\frac{\exp \left(-\frac{1}{4 t}\right)}{2 t^{3 / 2} \sqrt{\pi}}
$$

Discretize Use a grid $0=t_{0}<t_{1}<\ldots<t_{n-1}=1$ to approximate the operator equation $(K f)(t)=g(t)$ by a linear system

$$
g=K_{n} f, \quad K_{n} \in \mathbb{R}^{n \times n} .
$$

Idea Given a vector $g_{m} \in \mathbb{R}^{n}$ containing (noisy) measurements we solve the linear system $K_{n} f=g_{m}$.

Analysis Compute $K_{n}=U \Sigma V^{T}$. Plot the singular values $\left\{\sigma_{k}\right\}$.

Results The singular values decrease from $\sigma_{1} \approx 0.36$ continuously to $\sigma_{124} \approx 5.6 \cdot 10^{-8}$. The last 4 singular values are much smaller than the others. The problem is very ill-conditioned!

The basis functions v_{125} and v_{126}. Those components of $f(t)$ are multiplied by $\sigma_{125}=3.1 \cdot 10^{-21}$ and $\sigma_{125}=5.9 \cdot 10^{-24}$ respectively.

Conclusion There is a time delay in the problem. The signal $f(t)$ for t close to 1 doesn't have time to propagate through the medium and influence the measurement location $g(t)$. These components must be removed from the problem!

Numerical solution We include $k=12$ and $k=15$ components in

$$
f^{(k)}=\sum_{j=1}^{k} \frac{u_{j}^{T} g_{m}}{\sigma_{j}} v_{j}
$$

Remark Both solutions are fairly similar. Only the components we belive to be accurate are included!

The basis functions v_{20} and u_{20}. The corresponding singular value is $\sigma_{20}=3.6 \cdot 10^{-3}$. There is damping of high frequency components. The operator K is smoothing!

Conclusion Suppose the measurement errors are at most $\varepsilon=10^{-2}$ then only the first $k=12$ ($\left.\sigma_{12}=0.0129\right)$, or at most $k=15$ ($\sigma_{12}=0.0077$), components $g_{m}^{T} u_{k}=\sigma_{k} f^{T} v_{k}$ are above the noise level.

Numerical Solutions We include $k=5$ or $k=25$ components.

Remark Too few components and we miss features. Too many and the solution is mostly noise.

Application: Surface temperature on a steel roll

The best numerical uses $k=12$ singular components. Also the exact solution of the problem $f(t)$. Good accuracy except for the last 5 grid points.

Remark The SVD can reveal alot of information regarding a linear system of equations!

Sparse Matrices

Observation In applications often matrices are sparse, i.e. most elements $a_{i j}=0$.

To store the full matrix A still requires n^{2} slots of memory and a matrix-vector multiply,

$$
y=A x, \quad y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}
$$

still requires $2 n^{2}$ floating point operations.
Idea Store only the non-zero elements $a_{i j} \neq 0$. Implement matrix-vector multiply so only need $n n z(A)$ floating point operations.

Can store larger matrices and have a faster matrix-vector multiply!

Sparse Matrix Storage Schemes

Example Suppose the full matrix is

$$
A=\left(\begin{array}{cccccccccc}
1.1 & 0 & 0 & 3.7 & 0 & 0 & 0 & -1.2 & 0 & 0 \\
0 & 1.2 & 0 & 0 & 0 & 4.3 & 0 & 0 & -1.9 & 0 \\
0 & 0 & 2.1 & 0 & 0 & 0 & 0 & -1.8 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 3.1 & 0 & 0 & -1.5 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The elements of the matrix A is stored using three vectors

```
Elements= (1.1,3.7, -1.2, 1.2,4.3, -1.9, 2.1, -1.8,3.1,-1.5)
ColumnIndex = (1,4, 8, 2, 6, 9, 3, 8, 2, 5)
RowEndIndex = (3, 6, 8, 8, 10)
```

Matlab S=sparse (A). This is called Compress Sparse Row.

Origin of Sparse Matrices

Example Let $\Omega=[0,1] \times[0,1]$ and suppose we want to solve the boundary value problem,

$$
\Delta u=0, \quad \text { in } \Omega, \quad \text { and, } \quad u=g \text { on } \partial \Omega
$$

We discreize Ω using a uniform mesh

$$
\left(x_{i}, y_{j}\right)=(i \Delta x, j \Delta y), \quad 0 \leq i, j \leq N-1
$$

The differential equation is approximated by,

$$
u_{i, j-1}+u_{i-1, j}+u_{i+1, j}+u_{i, j+1}-4 u_{i, j}=0, \quad 1 \leq i, j \leq N-2 .
$$

We obtain an $N^{2} \times N^{2}$ matrix A with 5 non-zero elements on each row!

Typically want to use as large N as possible.

Sparse Matrix Operations

Suppose A is a sparse matrix stored in the CSR format and that $\eta=n n z(A)$ is the number of non-zero elements of A.

Lemma Storing a matrix in CSR format requires $\mathcal{O}(\eta)$ slots of memory and a matrix-vector multiply $y=A x$ uses $\mathcal{O}(\eta)$ operations.

Remark Matrix-Matrix multiply $C=A B$ should be avoided since the C usually isn't sparse.

Strongly favours iterative methods that only use matrix-vector multiply $y=A x$, and often $y=A^{T} x$. Solve linear systems, compute eigenvalues, etc.

Example A finite element model and the resulting stiffness matrix. Here $a_{i, j}$ is non-zero only if nodes N_{i} and N_{j} are neighbours.

Example An iterative method for computing an eigenvalue is the power method.

$$
\begin{aligned}
& \text { Algorithm Take } q^{(0)} \text { such that }\left\|q^{(0)}\right\|_{2}=1 \text {. For } \\
& k=1,2, \ldots, \text { do } \\
& \qquad \begin{array}{c}
w^{(k)}=A q^{(k-1)}, \\
\rho_{k-1}=\left(q^{(k-1)}\right)^{T} w^{(k)} \\
q^{(k)}=w^{(k)} /\left\|w^{(k)}\right\|_{2} .
\end{array}
\end{aligned}
$$

Then $\left(\rho_{k}, q^{(k)}\right)$ converges to the eigenpair $\left(\lambda_{1}, x_{1}\right)$.

Remark The power-iteration only uses matrix-vector multiply to compute eigenvalues and eigenvectors.

Stationary Iterative Methods

Lemma Let $A=M-N$ be a splitting. A solution of $A x=b$ is a fixed point to the iteration
$x^{(k+1)}=M^{-1} N x^{(k)}+M^{-1} b$.

Example Let $M=D=\operatorname{diag}(A)$ and $N=A-M$. Then $x^{(k)}=D^{-1}(D-A) x^{(k)}+D^{-1} b$ is the Jacobi method.

Lemma The iteration $x^{(k+1)}=G x^{(k)}+c$ is convergent if $\rho(G)<1$.

This is called Jacobis method.

Example - Jacobi Iteration

Definition A matrix A is diagonally dominant if

$$
\left|a_{i i}\right| \geq \sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|, \quad i=1,2, \ldots, n
$$

with strict inequality for at least one i.

Theorem If A is diagonally dominant then the Jacobi iteration is convergent.

Remark Matrices obtained by discratizing PDEs are usually diagonally dominant.

The convergence history $\left\|x^{(k)}-x\right\|_{2}$ (blue) for the Jacobi Iteration. Also theoretical convergence curve $\left\|x^{(0)}-x\right\|_{2} \rho(G)^{k}$ (red).

Remark This is very slow convergence.

Create a linear system of equations

$$
\begin{aligned}
& >A=\left[\begin{array}{lllllllllllllll}
3 & 1 & 0 & 0 & ; & -1 & 2 & 1 & 0 & 0 & -2 & 3 & 1 ; 0 & 0 & -2
\end{array}\right] ; \\
& \gg x=o n e s(4,1) ; b=A * x \text {; } \\
& \gg A \\
& A=
\end{aligned}
$$

The matrix A is diagonally dominant.
The Jacobi iteraton is $x_{k+1}=G x_{k}+c$, where $G=D^{-1}(D-A)$.

Lemma The Landweber iteration

$$
x^{(k+1)}=x^{(k)}+\omega A^{T}\left(b-A x^{(k)}\right)
$$

```
is convergent if 0<\omega<2/\sigma
```

Remark If the Landweber iteration converges then $A^{T}\left(b-A x^{*}\right)=0$ so we have the least squares solution.

The convergence is linear. We need faster methods.

