The Singular Value Decomposition

- Integral Equations.
- Application: Remote Sensing.

Sparse Matrices

- Compress Sparse Row storage.
- Stationary Iterative methods.

Integral Equations

Definition An *integral operator* $K : f \mapsto g$ can be written

$$g(x) = \int_{a}^{b} k(x, x') f(x') dx',$$

where k(x, x') is the *kernel*.

Remark The operator maps $f(x) \in \mathcal{X}$ onto $g(x) \in \mathcal{Y}$ where \mathcal{X} and \mathcal{Y} are suitable function spaces. Usually $C^{(0)}([a,b]), C^{(1)}([a,b]), L^2([a,b])$, etc.

The spaces can be equipped with a scalar product

$$(f_1, f_2) = \int_a^b f_1(x) f_2(x) dx.$$

August 29, 2017 Sida 2/1

Definition An operator is *linear* if

$$K(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 K f_1 + \alpha_2 K f_2,$$

for all f_1, f_2 in \mathcal{X} and $\alpha_1, \alpha_2 \in \mathbb{R}$.

Lemma The integal operator *K* is linear.

Remark Operators on function spaces are studied in *Functional analysis*. How to turn this into Linear algebra?

Method By *Discretization* we mean replacing functions by vectors, i.e.

$$f(x) \Longrightarrow f = (f(x_1), f(x_2), \ldots, f(x_n))^T \in \mathbb{R}^n$$

The operator is discretized using the collocation method

$$g(x_j) = \frac{b-a}{n} \sum_{i=1}^n k(x_j, x'_i) f(x'_i), \quad j = 1, 2, \dots, n.$$

We get Kf = g, where $K \in \mathbb{R}^{n \times n}$. The scalar product (f_1, f_2) is also discretized

$$(f_1, f_2) = \frac{1}{n} \sum_{i=1}^n f_1(x_i) f_f(x_i).$$

Remark The function f(x) can be recreated from the vector f using an interpolation scheme.

August 29, 2017 Sida 1/1

Remote Sensing: Temperature Measurements

Problem Find f(t) = T(0, t) using measurements $g_m(t) \approx T(1, t)$.

August 29, 2017 Sida 5/1

Example Collect n = 128 noisy measurements in a vector g_m and attempt to compute $f_c = K_n^{-1}g_m$.

The data vector g_m (left) and the numerical solution f_c to the linear system of equations. The problem is very ill–contitioned!

Lemma The operator mapping f(t) = T(0, t) onto the measurements g(t) = T(1, t) is

$$g(t) = (Kf)(t) = \int_0^t k(t-\tau)f(\tau)d\tau, \quad k(t) = \frac{\exp(-\frac{1}{4t})}{2t^{3/2}\sqrt{\pi}}.$$

Discretize Use a grid $0 = t_0 < t_1 < ... < t_{n-1} = 1$ to approximate the operator equation (Kf)(t) = g(t) by a linear system

$$g = K_n f, \qquad K_n \in \mathbb{R}^{n \times n}.$$

Idea Given a vector $g_m \in \mathbb{R}^n$ containing (noisy) measurements we solve the linear system $K_n f = g_m$.

August 29, 2017 Sida 6/1

Analysis Compute $K_n = U\Sigma V^T$. Plot the singular values $\{\sigma_k\}$.

Results The singular values decrease from $\sigma_1 \approx 0.36$ continuously to $\sigma_{124} \approx 5.6 \cdot 10^{-8}$. The last 4 singular values are much smaller than the others. The problem is very *ill-conditioned!*

The basis functions v_{125} and v_{126} . Those components of f(t) are multiplied by $\sigma_{125} = 3.1 \cdot 10^{-21}$ and $\sigma_{125} = 5.9 \cdot 10^{-24}$ respectively.

Conclusion There is a *time delay* in the problem. The signal f(t) for t close to 1 doesn't have time to propagate through the medium and influence the measurement location g(t). These components must be removed from the problem!

Numerical solution We include k = 12 and k = 15 components in

$$f^{(k)} = \sum_{j=1}^{k} \frac{u_j^T g_m}{\sigma_j} v_j$$

Remark Both solutions are fairly similar. Only the components we belive to be accurate are included!

The basis functions v_{20} and u_{20} . The corresponding singular value is $\sigma_{20} = 3.6 \cdot 10^{-3}$. There is damping of high frequency components. The operator *K* is *smoothing*!

Conclusion Suppose the measurement errors are at most $\varepsilon = 10^{-2}$ then only the first k = 12 ($\sigma_{12} = 0.0129$), or at most k = 15 ($\sigma_{12} = 0.0077$), components $g_m^T u_k = \sigma_k f^T v_k$ are above the noise level.

August 29, 2017 Sida 10/1

Numerical Solutions We include k = 5 or k = 25 components.

Remark Too few components and we miss features. Too many and the solution is mostly noise.

August 29, 2017 Sida 9/1

The best numerical uses k = 12 singular components. Also the exact solution of the problem f(t). Good accuracy except for the last 5 grid points.

Remark The SVD can reveal alot of information regarding a linear system of equations!

August 29, 2017 Sida 13/1

Application: Surface temperature on a steel roll

Example A steel roll of radius R_3 has been fitted with thermocouples at $r = R_2$. The interior of the roll is at $r = R_1$. Initially the roll is at a constant temperature. Find the transient surface temperature $T(x, R_3, t) = f(x, t)$ using measurements $T(x, R_2, t) = g(x, t)$.

Model The temperature in the steel roll T(x, r, t) satisfies

ſ	$(kT_x)_x + \frac{1}{r}(rkT_r)_r = \rho c_p T_t,$	in $(a,b) \times (0,t_{end}) \times (R_1,R_3)$,
I	$T(x,R_3,t)=f(x,t),$	
ł	$kT_r(x,r,t)=0,$	for $r = R_1$,
	$T_x(x,r,t)=0,$	for $x = a$, or $x = b$,
l	T(x,r,0) = f(x,0),	on $(L_1, L_2) \times (R_0, R_3) \times \{0\}$,

where f(x, 0) is a constant function so T(x, r) is also constant.

August 29, 2017 Sida 14/1

Lemma The mapping $K : f(x, t) \mapsto g(x, t)$ is linear.

Remark If we introduce a scalar product

$$(f_1, f_2) = \int_{x=a}^{b} \int_{t=0}^{t_{end}} f_1(x, t) f_2(x, t) dx dt$$

then we can use the singular value decomposition.

Observation If we discretize *K* using n = 100 grid points in *x* and m = 200 in *t* then the matrix $K^{(nm)}$ is of dimension $nm = 2 \cdot 10^4$. Its not feasible to compute the SVD. Alternative?

Sparse Matrices

Observation In applications often matrices are *sparse*, i.e. most elements $a_{ij} = 0$.

To store the full matrix A still requires n^2 slots of memory and a matrix–vector multiply,

$$y = Ax,$$
 $y_i = \sum_{j=1}^n a_{ij}x_j,$

still requires $2n^2$ floating point operations.

Idea Store only the non-zero elements $a_{ij} \neq 0$. Implement matrix-vector multiply so only need nnz (A) floating point operations.

Can store larger matrices and have a faster matrix-vector multiply!

Sparse Matrix Storage Schemes

Example Suppose the full matrix is

	1	1.1	0	0	3.7	0	0	0	-1.2	0	0 \
		0	1.2	0	0	0	4.3	0	0	-1.9	0
A =		0	0	2.1	0	0	0	0	-1.8	0	0
	l	0	0	0	0	0	0	0	0	0	0
		0	3.1	0	0	-1.5	0	0	0	0	0/

The elements of the matrix A is stored using three vectors

Elements=(1.1, 3.7, -1.2, 1.2, 4.3, -1.9, 2.1, -1.8, 3.1, -1.5)ColumnIndex = (1, 4, 8, 2, 6, 9, 3, 8, 2, 5)RowEndIndex = (3, 6, 8, 8, 10)

Matlab S=sparse (A). This is called *Compress Sparse Row*.

August 29, 2017 Sida 17/1

Sparse Matrix Operations

Suppose *A* is a sparse matrix stored in the CSR format and that $\eta = nnz(A)$ is the number of non-zero elements of *A*.

Lemma Storing a matrix in CSR format requires $O(\eta)$ slots of memory and a matrix–vector multiply y = Ax uses $O(\eta)$ operations.

Remark Matrix–Matrix multiply C = AB should be avoided since the *C* usually isn't sparse.

Strongly favours iterative methods that only use matrix-vector multiply y=Ax, and often $y=A^{T}x$. Solve linear systems, compute eigenvalues, etc.

August 29, 2017 Sida 18/1

Origin of Sparse Matrices

Example Let $\Omega = [0, 1] \times [0, 1]$ and suppose we want to solve the boundary value problem,

$$\Delta u = 0$$
, in Ω , and, $u = g$ on $\partial \Omega$.

We discreize Ω using a uniform mesh

$$(x_i, y_j) = (i\Delta x, j\Delta y), \qquad 0 \le i, j \le N-1.$$

The differential equation is approximated by,

 $u_{i,j-1} + u_{i-1,j} + u_{i+1,j} + u_{i,j+1} - 4u_{i,j} = 0, \qquad 1 \le i,j \le N-2.$

We obtain an $N^2 \times N^2$ matrix A with 5 non-zero elements on each row!

Typically want to use as large *N* as possible.

Example A finite element model and the resulting stiffness matrix. Here $a_{i,j}$ is non-zero only if nodes N_i and N_j are neighbours. **Example** An iterative method for computing an eigenvalue is the power method.

Algorithm Take $q^{(0)}$ such that $||q^{(0)}||_2 = 1$. For k = 1, 2, ...,do $w^{(k)} = Aq^{(k-1)},$ $\rho_{k-1} = (q^{(k-1)})^T w^{(k)},$ $q^{(k)} = w^{(k)} / ||w^{(k)}||_2.$ Then $(\rho_k, q^{(k)})$ converges to the eigenpair $(\lambda_1, x_1).$

Remark The power-iteration only uses matrix-vector multiply to compute eigenvalues and eigenvectors.

August 29, 2017 Sida 21/1

Jacobis Method

Let *x* be the solution of the linear system. Then the *i*th component of the residual b - Ax is

$$b_i - \sum_{j=1}^n a_{ij} x_j = 0$$
, or, $x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j \right)$.

Given a starting approximation $x^{(0)}$ we solve using fixed point iteration to obtain,

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right), \quad i = 1, \dots, n.$$

This is called *Jacobis method*.

Let *A* be a sparse matrix. We want to solve the linear system,

Ax = b.

Definition An *iterative method* creates a sequence $\{x_k\}$ given a starting approximation x_0 . The method is *convergent* if $x_k \rightarrow x$, as $k \rightarrow \infty$.

Remark Efficient use of sparsity if the next iterate x_{k+1} is created from x_k using matrix–vector multiplications y = Ax or $y = A^Tx$.

August 29, 2017 Sida 22/1

Stationary Iterative Methods

Lemma Let A = M - N be a splitting. A solution of Ax = b is a *fixed point* to the iteration $x^{(k+1)} = M^{-1}Nx^{(k)} + M^{-1}b.$

Example Let M = D = diag(A) and N = A - M. Then $x^{(k)} = D^{-1}(D - A)x^{(k)} + D^{-1}b$ is the Jacobi method.

Lemma The iteration $x^{(k+1)} = Gx^{(k)} + c$ is convergent if $\rho(G) < 1$.

Definition A matrix *A* is *diagonally dominant* if

$$|a_{ii}| \ge \sum_{j=1, j \ne i}^{n} |a_{ij}|, \qquad i = 1, 2, \dots, n,$$

with strict inequality for at least one *i*.

Theorem If *A* is *diagonally dominant* then the *Jacobi iteration* is convergent.

Remark Matrices obtained by discratizing PDEs are usually diagonally dominant.

August 29, 2017 Sida 25/1

Create a linear system of equations

The matrix A is diagonally dominant.

The Jacobi iteraton is $x_{k+1} = Gx_k + c$, where $G = D^{-1}(D - A)$.

August 29, 2017 Sida 26/1

The convergence history $||x^{(k)} - x||_2$ (blue) for the Jacobi Iteration. Also theoretical convergence curve $||x^{(0)} - x||_2 \rho(G)^k$ (red).

Remark This is very slow convergence.

Lemma The Landweber iteration, $x^{(k+1)} = x^{(k)} + \omega A^T (b - A x^{(k)}),$ is convergent if $0 < \omega < 2/\sigma_1^2$.

Remark If the Landweber iteration converges then $A^T(b - Ax^*) = 0$ so we have the least squares solution.

The convergence is *linear*. We need faster methods.