- Symmetric Sparse Matrices
- The Lanczos process.
- The Conjugate Gradient Algorithm.
- Chebyshev Polynomials and Error estimate.
- Eigenvalues
- Symmetric and Non-symmetric case.
- Least Squares problems.
- Preconditioning
- The basic idea. Preconditioned CG.
- Approximate Sparse Inverse.

Lemma Let A be symmetric and positive definite. If $\mathcal{L}_{m}=\mathcal{K}_{m}$. Then the projection method is well defined.

Remark Recall that $(x, y)_{A}=x^{T} A y$ is a scalar product and $\|x\|_{A}=(x, x)_{A}^{1 / 2}$ is a norm.

Question How to compute a basis for $\mathcal{K}_{m}\left(A, r^{(0)}\right)$?
Take advantage of the fact that $(x, y)_{A}$ is a scalar product.

The Lanczos process

```
Algorithm Let }A\mathrm{ be positive definite and symmetric
Calculate a basis for the Krylov subspace }\mp@subsup{\mathcal{K}}{n}{}(A,\mp@subsup{q}{1}{})\mathrm{ by
ro}=\mp@subsup{q}{1}{},\mp@subsup{\beta}{0}{}=1,\mp@subsup{q}{0}{}=
for }k=0,1,\ldots,n\mathrm{ do
    q}\mp@subsup{q}{k+1}{}=\mp@subsup{r}{k}{}/\mp@subsup{\beta}{k}{}\mathrm{ and }\mp@subsup{\alpha}{k}{}=\mp@subsup{q}{k}{T}A\mp@subsup{q}{k}{}
    rk}=(A-\mp@subsup{\alpha}{k}{}I)\mp@subsup{q}{k}{}-\mp@subsup{\beta}{k-1}{}\mp@subsup{q}{k-1}{}
    \beta}=|\mp@subsup{r}{k}{}\mp@subsup{|}{2}{}
end
```

Remark Break-down occurs if $r_{k}=0$. In that case we have an invariant subspace $\operatorname{span}\left(q_{1}, \ldots, q_{k}\right)$.

Only need to make q_{k+1} orthogonal to q_{k} and q_{k-1}.
Proposition Let Q_{k} and T_{k} be the matrices obtained after k steps in the Lanczos process. Then

$$
A Q_{k}=Q_{k} T_{k}+r_{k} e_{k}^{T} \quad \text { or } \quad A=Q T Q^{T}
$$

Remark Since T is tridiagonal and obtained by a similarity transformation from A it is feasible to compute all eigenvalues of a sparse symmetric matrix.

Matlab eigs and svds.

Lemma The approximate solution $x^{(m)}$ a linear system $A x=b$ is obtained by starting the Lanczos procedure with

$$
q_{0}=r^{(0)}=b-A x^{(0)}, \quad \text { and }, \quad \beta_{0}=\left\|r^{(0)}\right\|_{2}
$$

and then setting,

$$
x^{(m)}=x^{(0)}+Q_{m} y_{m}, \quad y_{m}=T_{m}^{-1}\left(\beta_{0} e_{1}\right)
$$

Remark Can compute solutions $x^{(k)}$ during the Lanczos steps.

The Conjugate Gradient Method

> Algorithm Compute an approximate solution $x^{(j)}$ by $$
\begin{array}{l}r^{(0)}=b-A x^{(0)}, p_{0}:=r^{(0)} \text {. } \\ \text { for } j=1,2, \ldots \text { do } \\ \alpha_{j}:=\left(r^{(j)}, r^{(j)}\right) /\left(A p_{j}, p_{j}\right) \text {. } \\ x^{(j+1)}:=x^{(j)}+\alpha_{j} p_{j} \text {. } \\ \quad r^{(j+1)}:=r^{(j)}-\alpha_{j} A p_{j} . \\ \beta_{j}:=\left(r^{(j+1)}, r^{(j+1)}\right) /\left(r^{(j)}, r^{(j)}\right) \text {. } \\ \quad p_{j+1}:=r_{j+1}+\beta_{j} p_{j} \text {. } \\ \text { end }\end{array} .
$$

Remark Need to store 4 vectors ($x, p, A p$, and r). The Matlab function pcg implements this.

Proposition Let A be symmetric and positive definite. The sequence $\left\{x^{(k)}\right\}$ calculated by the Lanczos process satisfies

$$
x^{(k+1)}=x^{(k)}+\alpha_{k} p_{k}, \quad r^{(k)}=\beta_{k} q_{k+1}
$$

and the search directions $\left\{p_{k}\right\}$ form a conjugate set.

Corollary The residuals $\left\{r^{(k)}\right\}$ are orthogonal to each other.

Example The West0479 test problem

Residual norm $\left\|b-A x^{(k)}\right\|_{2}$ for the first 50 CG iterations. Around 10 iterations is enough for a good solution.

The error $\left\|x^{(k)}-x^{*}\right\|_{A}$ is monotically decreasing. Not the residuals.

Convergence of the CG algorithm

Chebyshev Polynomials

Lemma Let $x^{(k)}$ be the approximate solution obtained from the k th step of CG. Then $x^{(k)}$ is of the form,

$$
x^{(k)}=x^{(0)}+q_{k-1}(A) r^{(0)}
$$

where q_{k-1} is a polynomial of degree $<k-1$ and

$$
\left\|x^{(k)}-x^{*}\right\|_{A}=\min _{q \in \mathcal{P}_{k-1}}\left\|\left(I-A q_{k-1}(A)\right)\left(x^{(0)}-x^{*}\right)\right\|_{A} .
$$

Remark Error estimate by picking the polynomial q in a clever way. The residual polynomial $r(x)=1-x q(x)$ satisfies $r(0)=1$.

Theorem Let $[\alpha, \beta] \in \mathbb{R}$ be a non-empty interval not including 0 . The minimum

$$
\min _{p(0)=1} \max _{t \in[\alpha, \beta]}|p(t)|,
$$

for polynomials of degree $<k$ is attained by the polynomial

$$
p(t)=\frac{c_{k}\left(1+2 \frac{t-\beta}{\beta-\alpha}\right)}{c_{k}\left(1+2 \frac{0-\beta}{\beta-\alpha}\right)} .
$$

Remark Since eigenvalues of symmetric A are real this version of the theorem suffice. To analyze GMRES compelx Chebyshev polynomials are needed! Otherwise very similar proofs.

Definition The Chebyshev polynomioals are given by the relations, $c_{0}(x)=1, c_{1}(x)=x$, and

$$
c_{k+1}(x)=2 x c_{k}(x)-c_{k-1}(x), \quad k \geq 1
$$

Theorem The polynomial $2^{-k+1} c_{k}(x)$ is the polynomial with the smallest maximum norm on the interval $[-1,1]$ out of all polynomials with leading coefficient 1 , and

$$
\left|c_{k}(x)\right| \leq 2^{-k+1}, \quad \text { for }-1 \leq x \leq 1
$$

Remark This follows from $c_{k}(x)=\cos (k \arccos (x)),-1 \leq x \leq 1$.

Theorem Let $x^{(k)}$ be the approximate solution obtained after k steps of the CG algorithm and define

$$
\eta=\frac{\lambda_{\min }}{\lambda_{\max }-\lambda_{\min }}
$$

Then

$$
\left\|x^{(k)}-x^{*}\right\|_{A} \leq \frac{\left\|x^{(0)}-x^{*}\right\|_{A}}{c_{k}(1+2 \eta)}
$$

where $c_{k}(x)$ is the Chebyshev polynomial of degree k.

For general non-singular matrices we have the Arnoldi process.

Corollary If $\kappa=\lambda_{\max } / \lambda_{\text {min }}$ is the condition number of A then,

$$
\left\|x^{(k)}-x^{*}\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k}\left\|x^{(0)}-x^{*}\right\|_{A}
$$

Remark The number of iterations needed to reduce the error by a constant factor is proportional to $\sqrt{\kappa}$.

Preconditioning

Alternative Keep only the latest k vectors obtained during the Arnoldi process. Then

$$
V_{k}^{(i)}=\left(v_{1}, \ldots, v_{k}\right), \quad \operatorname{span}\left(V_{k}^{(i)}\right)=\operatorname{span}\left(A^{i-k} v_{0}, \ldots, A^{i} v_{0}\right)
$$

Compare with the power method. The subspace $V_{k}^{(i)}$ converges to the dominant subspace of A. We get the k largest eigenvalues of A.

Remark The k eigenvalues closest to a shift μ are obtained by running the algorithm with

$$
B=(A-\mu I)^{-1}
$$

At each step the system $(A-\mu I) w_{i+1}=v_{i}$ is solved using GMRES. Accuracy of GMRES depends on $\kappa_{2}(A)$ and harder to know what errors you get. In Matlab eigs does this.

Proposition Let H_{m} be the Hessenberg matrix and V_{m} be the orthogonal basis computed by the Arnoldi process. Then

$$
A V_{m}=V_{m} H_{m}+w_{m} e_{m}^{T}, \quad \text { and, } \quad V_{m}^{T} A V_{m}=H_{m}
$$

After k steps we have $V_{k}^{T} A V_{k} \approx H_{k}$ and $\lambda_{i}(A) \approx \lambda_{i}\left(H_{k}\right)$, for $i<k$.

Remark Since k is small this is not very impressive.

If a system $A x=b$ is difficult to solve using iterative methods then typically the issue is with the matrix, e.g. high condition number.

Idea Replace $A x=b$ by an equivalent system $\hat{A} \hat{x}=\hat{b}$ that is "easier" to solve.

Questions

- How to construct the preconditioned system $\hat{A} \hat{x}=\hat{b}$.
- How to implement the iterative method efficiently.
- Preconditioners that preserve properties of the original system, e.g. symmetry.

Preserving Symmetry

Pick a non-singular matrix M and write

$$
A x=b \quad \Longleftrightarrow \quad M^{-1} A x=M^{-1} b
$$

The matrix M is selected so that
(1) $M \approx A$ or $M^{-1} A \approx I$.
(2) $\mathrm{nnz}(A) \approx \mathrm{nnz}(M)$.
(3) Easy to compute $u=M^{-1} v$.

Remark This is called left-preconditioning. The residuals are modified, $\hat{r}=\hat{b}-\hat{A} x=M^{-1} r$. May have to modify stopping criteria.

Right-preconditioning is $A M^{-1} y=b, y=M x$. Variables change.
Residuals stay the same.

The Conjugate Gradient Method

Preconditioning GMRES

The CG algorithm is

```
\(r^{(0)}=b-A x^{(0)}, p_{0}:=r^{(0)}\).
for \(j=1,2, \ldots\) do
    \(\alpha_{j}=\left(r^{(j)}, r^{(j)}\right) /\left(A p_{j}, p_{j}\right)\).
    \(x^{(j+1)}:=x^{(j)}+\alpha_{j} p_{j}\).
    \(r^{(j+1)}:=r^{(j)}-\alpha_{i} A p_{j}\)
    \(\beta_{j}:=\left(r^{(j+1)}, r^{(j+1)}\right) /\left(r^{(j)}, r^{(j)}\right)\).
    \(p_{j+1}:=r_{j+1}+\beta_{j} p_{j}\).
end
```

Question How to modify to incorporate split- or left-preconditioning?

- No need to worry about preserving symmetry.
- Left- and Right-preconditioning same as CG. Keep original variables and residuals.
- Split preconditioning can be implemented using a non-singular $M=L U$.

Finding a Preconditioner

Sparse Approximate Inverse

There are two approaches to finding good preconditioners:

- Problem specific: Exploit knowledge about the specific problem that is solved, e.g. originates from a boudnary value problem for a $P D E$, and discretized using FEM or FDM.
- General methods: Adapt general solution methods to work better with sparse matrices, e.g. incomplete LU/Cholesky or Sparse Approximate Inverse.

Remark Most methods are of the first kind. Though not mentioned as much in books or courses.

Approximate the inverse $A^{-1} \approx M$. Solve least squares problems,

- Right-preconditioner: $\|I-M A\|_{F}^{2}$.
- Left-preconditioner: $\|I-A M\|_{F}^{2}$.
- Split-preconditioner: $\|I-L A U\|_{F}^{2}$.

For the right-preconditioner we get an objective function

$$
F(M)=\|I-A M\|_{F}^{2}=\sum_{j=1}^{n}\left\|e_{j}-A m_{j}\right\|_{2}^{2}
$$

In Matlab: pcg and gmres both allow for preconditioning.

