
MAI0119/Lecture 10.5 - Contents

• Symmetric Sparse Matrices

- The Lanczos process.

- The Conjugate Gradient Algorithm.

- Chebyshev Polynomials and Error estimate.

• Eigenvalues

- Symmetric and Non-symmetric case.

- Least Squares problems.

• Preconditioning

- The basic idea. Preconditioned CG.

- Approximate Sparse Inverse.

September 22, 2017 Sida 1 / 22

Symmetric Matrices and Projection Methods

Lemma Let A be symmetric and positive definite. If

Lm = Km. Then the projection method is well defined.

Remark Recall that (x, y)A = xT Ay is a scalar product and

‖x‖A = (x, x)
1/2

A is a norm.

Question How to compute a basis for Km(A, r(0))?

Take advantage of the fact that (x, y)A is a scalar product.
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The Lanczos process

Algorithm Let A be positive definite and symmetric.

Calculate a basis for the Krylov subspace Kn(A, q1) by

r0 = q1, β0 = 1, q0 = 0

for k = 0, 1, . . . , n do

qk+1 = rk/βk and αk = qT
k Aqk.

rk = (A − αkI)qk − βk−1qk−1.

βk = ‖rk‖2.

end

Remark Break-down occurs if rk = 0. In that case we have an

invariant subspace span(q1, . . . , qk).

Only need to make qk+1 orthogonal to qk and qk−1.
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Proposition Let Qk and Tk be the matrices obtained after

k steps in the Lanczos process. Then

AQk = QkTk + rkeT
k or A = QTQT .

Remark Since T is tridiagonal and obtained by a similarity

transformation from A it is feasible to compute all eigenvalues of a

sparse symmetric matrix.

Matlab eigs and svds.
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Lemma The approximate solution x(m) a linear system

Ax = b is obtained by starting the Lanczos procedure with

q0 = r(0) = b − Ax(0), and, β0 = ‖r(0)‖2,

and then setting,

x(m) = x(0) + Qmym, ym = T−1
m (β0e1).

Remark Can compute solutions x(k) during the Lanczos steps.
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Definition Vectors x and y are conjugate if (x, y)A = 0.

Proposition Let A be symmetric and positive definite.

The sequence {x(k)} calculated by the Lanczos process

satisfies

x(k+1) = x(k) + αkpk, r(k) = βkqk+1,

and the search directions {pk} form a conjugate set.

Corollary The residuals {r(k)} are orthogonal to each

other.
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The Conjugate Gradient Method

Algorithm Compute an approximate solution x(j) by

r(0) = b − Ax(0), p0 := r(0).

for j = 1, 2, . . . do

αj := (r(j), r(j))/(Apj, pj).
x(j+1) := x(j) + αjpj.

r(j+1) := r(j) − αjApj.

βj := (r(j+1), r(j+1))/(r(j), r(j)).
pj+1 := rj+1 + βjpj.

end

Remark Need to store 4 vectors (x, p, Ap, and r). The Matlab

function pcg implements this.
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Example The West0479 test problem
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Iteration number k

Residual norm ‖b − Ax(k)‖2 for the first 50 CG iterations. Around 10

iterations is enough for a good solution.

The error ‖x(k) − x∗‖A is monotically decreasing. Not the residuals.
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Convergence of the CG algorithm

Lemma Let x(k) be the approximate solution obtained

from the kth step of CG. Then x(k) is of the form,

x(k) = x(0) + qk−1(A)r
(0)

where qk−1 is a polynomial of degree < k − 1 and

‖x(k) − x∗‖A = min
q∈Pk−1

‖(I − Aqk−1(A))(x
(0) − x∗)‖A.

Remark Error estimate by picking the polynomial q in a clever way.

The residual polynomial r(x) = 1 − xq(x) satisfies r(0) = 1.
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Chebyshev Polynomials

Definition The Chebyshev polynomioals are given by the

relations, c0(x) = 1, c1(x) = x, and

ck+1(x) = 2xck(x)− ck−1(x), k ≥ 1.

Theorem The polynomial 2−k+1ck(x) is the polynomial

with the smallest maximum norm on the interval [−1, 1]
out of all polynomials with leading coefficient 1, and

|ck(x)| ≤ 2−k+1, for − 1 ≤ x ≤ 1.

Remark This follows from ck(x) = cos(k arccos(x)), −1 ≤ x ≤ 1.
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Theorem Let [α, β] ∈ R be a non-empty interval not

including 0. The minimum

min
p(0)=1

max
t∈[α,β]

|p(t)|,

for polynomials of degree < k is attained by the

polynomial

p(t) =
ck(1 + 2 t−β

β−α)

ck(1 + 2 0−β
β−α)

.

Remark Since eigenvalues of symmetric A are real this version of the

theorem suffice. To analyze GMRES compelx Chebyshev

polynomials are needed! Otherwise very similar proofs.
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Theorem Let x(k) be the approximate solution obtained

after k steps of the CG algorithm and define

η =
λmin

λmax − λmin

Then

‖x(k) − x∗‖A ≤ ‖x(0) − x∗‖A

ck(1 + 2η)

where ck(x) is the Chebyshev polynomial of degree k.
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Corollary If κ = λmax/λmin is the condition number of A

then,

‖x(k) − x∗‖A ≤ 2

(√
κ− 1√
κ+ 1

)k

‖x(0) − x∗‖A.

Remark The number of iterations needed to reduce the error by a

constant factor is proportional to
√
κ.
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For general non-singular matrices we have the Arnoldi process.

Proposition Let Hm be the Hessenberg matrix and Vm be

the orthogonal basis computed by the Arnoldi process.

Then

AVm = VmHm + wmeT
m, and, VT

mAVm = Hm.

After k steps we have VT
k AVk ≈ Hk and λi(A) ≈ λi(Hk), for i < k.

Remark Since k is small this is not very impressive.
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Alternative Keep only the latest k vectors obtained during the

Arnoldi process. Then

V
(i)
k = (v1, . . . , vk), span(V

(i)
k ) = span(Ai−kv0, . . . ,Aiv0).

Compare with the power method. The subspace V
(i)
k converges to the

dominant subspace of A. We get the k largest eigenvalues of A.

Remark The k eigenvalues closest to a shift µ are obtained by

running the algorithm with

B = (A − µI)−1.

At each step the system (A − µI)wi+1 = vi is solved using GMRES.

Accuracy of GMRES depends on κ2(A) and harder to know what

errors you get. In Matlab eigs does this.
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Preconditioning

If a system Ax = b is difficult to solve using iterative methods then

typically the issue is with the matrix, e.g. high condition number.

Idea Replace Ax = b by an equivalent system Âx̂ = b̂ that is “easier”

to solve.

Questions

• How to construct the preconditioned system Âx̂ = b̂.

• How to implement the iterative method efficiently.

• Preconditioners that preserve properties of the original system,

e.g. symmetry.
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Pick a non-singular matrix M and write

Ax = b ⇐⇒ M−1Ax = M−1b

The matrix M is selected so that

(1) M ≈ A or M−1A ≈ I.

(2) nnz(A) ≈ nnz(M).

(3) Easy to compute u = M−1v.

Remark This is called left-preconditioning. The residuals are

modified, r̂ = b̂ − Âx = M−1r. May have to modify stopping criteria.

Right-preconditioning is AM−1y = b, y = Mx. Variables change.

Residuals stay the same.
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Preserving Symmetry

Suppose A and M are symmetric and positive definite. We want to

preserve the symmetry. Two options for preconditioning.

Split–preconditioning Let M = LLT and solve

Âu = (L−1AL−T)u = L−1b, x = L−Tu.

Left-predonditioning M−1A is self-adjoint, i.e. “symmetric”, with

respect to the scalar product (·, ·)M . Rewrite CG to use this scalar

product.
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The Conjugate Gradient Method

The CG algorithm is

r(0) = b − Ax(0), p0 := r(0).

for j = 1, 2, . . . do

αj = (r(j), r(j))/(Apj, pj).
x(j+1) := x(j) + αjpj.

r(j+1) := r(j) − αjApj.

βj := (r(j+1), r(j+1))/(r(j), r(j)).
pj+1 := rj+1 + βjpj.

end

Question How to modify to incorporate split– or

left–preconditioning?
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Preconditioning GMRES

- No need to worry about preserving symmetry.

- Left– and Right–preconditioning same as CG. Keep original

variables and residuals.

- Split preconditioning can be implemented using a non-singular

M = LU.
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Finding a Preconditioner

There are two approaches to finding good preconditioners:

- Problem specific: Exploit knowledge about the specific problem

that is solved, e.g. originates from a boudnary value problem for

a PDE, and discretized using FEM or FDM.

- General methods: Adapt general solution methods to work better

with sparse matrices, e.g. incomplete LU/Cholesky or Sparse

Approximate Inverse.

Remark Most methods are of the first kind. Though not mentioned as

much in books or courses.
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Sparse Approximate Inverse

Approximate the inverse A−1 ≈ M. Solve least squares problems,

- Right-preconditioner: ‖I − MA‖2
F.

- Left-preconditioner: ‖I − AM‖2
F.

- Split-preconditioner: ‖I − LAU‖2
F.

For the right-preconditioner we get an objective function

F(M) = ‖I − AM‖2
F =

n
∑

j=1

‖ej − Amj‖2
2.

In Matlab: pcg and gmres both allow for preconditioning.
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