MAI0119 Computational Linear Algebra

Fredrik Berntsson, Email: fredrik.berntsson@liu.se

Problems: Basic Theory, Linear Systems and Least Squaers. Complete exercises for a minimum of 10 p to pass.
(1p) 1. An $n \times n$ matrix is said to be elementary if it can be written as $A=$ $I-u v^{T}$, where u and v are vectors. What condition on u and v ensures that A is non-singular? Also prove that A^{-1} is also elementary (by showing $\left.A^{-1}=I-\alpha u v^{T}\right)$.
2. Let $v \in \mathbb{R}^{n}$. Prove or disprove

$$
\|v\|_{1}\|v\|_{\infty} \leq \frac{1+\sqrt{n}}{2}\|v\|_{2}
$$

3. Let B be any submatrix of A. Show that $\|B\|_{p} \leq\|A\|_{p}$.
4. Suppose $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$. Show that if $E=u v^{T}$ then $\|E\|_{F}=$ $\|E\|_{2}=\|u\|_{2}\|v\|_{2}$ and that $\|E\|_{\infty} \leq\|u\|_{\infty}\|v\|_{1}$.
5. Let $A \in \mathbb{R}^{m \times n}$. Prove the relation $\frac{1}{\sqrt{m}}\|A\|_{1} \leq\|A\|_{2} \leq \sqrt{n}\|A\|_{1}$.
6. Prove the Sherman-Morrison formula

$$
\left(A-u v^{T}\right)^{-1}=A^{-1}+A^{-1} u\left(1-v^{T} A^{-1} u\right)^{-1} v^{T} A^{-1}
$$

(1p) 8. Suppose we have two vectors $a_{1}, a_{2} \in \mathbb{R}^{m}$ and we want to compute a projection of a vector x onto $\operatorname{span}\left(a_{1}, a_{2}\right)^{\perp}$. The $Q R$ decomposition of the matrix $\left(a_{1}, a_{2}\right)$ is available. Give a formula for the desired projection $y=P x$.
9. Suppose we have a linear system $A x=b$ where

$$
A=\left(\begin{array}{ccc}
2 & 1 & -2 \\
-1 & 0 & 3 \\
1 & 2 & -1
\end{array}\right) \text { and } b=\left(\begin{array}{c}
6 \\
1 \\
-3
\end{array}\right)
$$

During the first step of Gaussian elimination we multiply the system with a matrix L_{1} such that the new system $L_{1} A x=L_{1} b$ is

$$
\left(\begin{array}{ccc}
2 & 1 & -2 \\
0 & 0.5 & 2 \\
0 & 1.5 & 0
\end{array}\right) x=\left(\begin{array}{c}
6 \\
4 \\
-6
\end{array}\right) .
$$

Give the Gausstransformation L_{1}.
(1p)
(2p)
(1p) 12. How would you solve a partitioned linear system

$$
\left(\begin{array}{cc}
L_{1} & 0 \\
B & L_{2}
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{b_{1}}{b_{2}} .
$$

where L_{1} and L_{2} are lower triangular. Show the steps in terms of the given submatrices and vectors.
(1p) 13. If A is both an ortgohonal matrix and an orthogonal projection. What can you conclude about A ?
(1p)
14. Suppose $A \in \mathbb{R}^{m \times n}, m>n$, and that we have the $Q R$ decomposition

$$
A=Q\binom{R}{0}=Q_{1} R
$$

Show that $P=I-Q_{1} Q_{1}^{T}$ is an orthogonal projection onto Range $(A)^{\perp}$. Also show that $P b=r=b-A x$ where x is the least squares solution.
(1p) 15. Prove that the product of two lower triangular matrices is also lower triangular and that the inverse of a lower triangular matrix is also lower triangular.
17. Let

$$
A=\left(\begin{array}{cc}
R & w \\
0 & v
\end{array}\right) \text { and } b=\binom{c}{d}
$$

where R is $k \times k, w, c$ is $k \times 1$, and v, d is $(m-k) \times 1$. Show that if A has full column rank then $\min \|A x-b\|_{2}^{2}=\|d\|_{2}^{2}-\left(v^{T} d /\|v\|_{2}\right)^{2}$.

