MAI0119 Computational Linear Algebra

Fredrik Berntsson, Email: fredrik.berntsson@liu.se

Problems: Error analysis and Eigenvalues. Complete exercises for a minimum of 15 p to pass.
2. Show that if $E \in \mathbb{R}^{m \times n}$, with $m \geq n$, then $\||E|\|_{2} \leq \sqrt{n}\|E\|_{2}$. This is useful for deriving norm bounds from absolute value bounds.
(1p) 3. Suppose A is symmetric and positive definite. Let M_{1} be the Guass transformation such that

$$
M_{1} A=\left(\begin{array}{cc}
a_{11} & w^{T} \\
0 & \tilde{A}_{22}
\end{array}\right)
$$

Show that

$$
M_{1} A M_{1}^{T}=\left(\begin{array}{cc}
a_{11} & 0^{T} \\
0 & B
\end{array}\right)
$$

where B is symmetric and positive definite.
5. Show that if

$$
R=\left(\begin{array}{cc}
R_{11} & R_{12} \\
0 & R_{22}
\end{array}\right)
$$

is normal and $\lambda\left(R_{11}\right) \cap \lambda\left(R_{22}\right)=\emptyset$ then $R_{12}=0$.
(1p) 6. Show that if S is skew-symmetric (i.e. $\left.S^{T}=-S\right)$ then $Q=(I+S)(I-$ $S)^{-1}$ is orthogonal. The matrix Q is called the Caley transform of S.
(1p) 7. Suppose (λ, x) is a known eigenpair for the matrix A. Give an algorithm for computing an orthogonal matrix P such that

$$
P^{T} A P=\left(\begin{array}{cc}
\lambda & w^{T} \\
0 & \widetilde{A}
\end{array}\right) .
$$

Hint: Compute P as a product of Givens rotations.
(1p) 8. Prove that all the eigenvalues of a Hermitean matrix A are real. Use the result to prove that the eigenvalues of a real symmetric matrix are real.
9. Prove that for any matrix norm induced by a vector norm the spectral radius satisfies $\rho(A) \leq\|A\|$.
11. Suppose $A, B \in \mathbb{R}^{n \times n}$ and in addition A is non-singular. Show that $A B$ and $B A$ have the same eigenvalues. 12. Show that for any two real vectors
10. A matrix A is said to be nilpotent if $A^{k}=0$ for some positive integer k. Show that all eigenvalues of a nilpotent matrix are zero. Can you conclude that A is the zero matrix? u and v the formula

$$
\operatorname{det}\left(I+u v^{T}\right)=1+u^{T} v
$$

holds.
13. Let $A \in \mathbb{R}^{n \times n}$ and $\rho(A)<1$. Show that $I-A$ is non-singular and

$$
(I-A)^{-1}=\sum_{k=0}^{\infty} A^{k} .
$$

(1p)
14. Let A be real and symmetric with eigenvalues $\lambda_{\text {min }} \leq \lambda(A) \leq \lambda_{\text {max }}$. Show that for $x \neq 0$,

$$
\lambda_{\min } \leq \frac{x^{T} A x}{x^{T} x} \leq \lambda_{\max }
$$

(1p)
15. Suppose $A \in \mathbb{R}^{n \times n}, \operatorname{rank}(A)=n$, and $A=Q R$, where Q is orthogonal and R is upper triangular.
a) Show that $R Q$ is a Hessenberg matrix if A is a Hessenberg matrix.
b) Show that $R Q$ is tridiagonal if A is symmetric and tridiagonal.

Hint: Write Q as a product of Givens rotations. It is enough to treat the 4×4 case to clearly see the pattern.
(1p)
(1p) 17. Suppose (λ, x) is a known eigenpair for the matrix A. Give an algorithm for computing an orthogonal matrix P such that

$$
P^{T} A P=\left(\begin{array}{cc}
\lambda & w^{T} \\
0 & \widetilde{A}
\end{array}\right)
$$

Write P as a product of Givens rotations.
18. Show that if $A \in \mathbb{R}^{m \times n}$ then $\|A\|_{F} \leq \sqrt{\operatorname{rank}(A)}\|A\|_{2}$.
(2p)
19. Suppose,

$$
A=\left(\begin{array}{cc}
D & v \\
v^{T} & d_{n}
\end{array}\right)
$$

where $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n-1}\right)$ has distinct diagonal entries and $v \in \mathbb{R}^{n-1}$ has no non-zero elements. Show that if $\lambda \in \lambda(A)$ then $D-\lambda I$ is non-singular, and that λ is a root of

$$
f(\lambda)=\lambda+\sum_{k=1}^{n-1} \frac{v_{k}^{2}}{d_{k}-\lambda}-d_{n} .
$$

20. With the same assumptions as in the Bauer-Fike theorem show that

$$
\min _{\lambda \in \lambda(A)}|\lambda-\mu| \leq\left\|\left|\left|X^{-1}\right|\right| E| | X \mid\right\|_{p} .
$$

