MAI0102 ENUMERATIVE COMBINATORICS, 2018 PROBLEM SET 1

(Before beginning, please read the homework policy on the course webpage.)

Each problem is worth ten points. You may get partial credit for non-useless, non-perfect solutions. The problems are not ordered by difficulty. Hand in your solutions no later than October 11.

1. We have claimed that differentiation in the ring $\mathbb{C}[[x]]$ of formal power series satisfies (among other things) the product rule (FG)' = F'G + FG'. Prove it.

2. How many k-tuples (S_1, \ldots, S_k) satisfy $S_1 \subseteq S_2 \subseteq \cdots \subseteq S_k \subseteq [n]$?

3. Recall that a polynomial is called *homogeneous* if all its monomials are of the same degree. For example, $2xyz + 3x^2z - z^3$ is homogeneous of degree 3 whereas $2xyz + 3x^2z - z$ is inhomogeneous. Together with 0, the homogeneous polynomials of degree k in n variables (with coefficients in \mathbb{R} , say) form a vector space (over \mathbb{R}) which we call V_k^n . Find dim (V_k^n) and a simple expression for the *Hilbert series* $\sum_{k>0} \dim(V_k^n)x^k$.

4. (This is Exercise 1.7 in Stanley.) Let the numbers f(i) be defined by

$$e^{x + \frac{x^2}{2}} = \sum_{n \ge 0} f(n) \frac{x^n}{n!}.$$

Find a simple expression for the sum

$$\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} f(i).$$

Hint. Consider $e^{\frac{x^2}{2}} = e^{x + \frac{x^2}{2}} \cdot e^{-x}$.

5. Let f(n) be the number of complete matchings on [2n], i.e. the number of graphs on vertex set [2n] where every vertex is incident to exactly one edge. Observe (or, define) f(0) = 1. Find simple formulae for f(n) and for the exponential generating function $\sum_{n\geq 0} f(n) \frac{x^n}{n!}$.