MAI0102 ENUMERATIVE COMBINATORICS, 2018 PROBLEM SET 2

Each problem is worth ten points. You may get partial credit for non-useless, non-perfect solutions. The problems are not ordered by difficulty. Hand in your solutions no later than October 25.

1. Let $a(n)$ be the number of compositions ${ }^{1}$ of n into parts of size 2 or 3 . For example, $9=3+3+3=3+2+2+2=2+3+2+2=2+2+3+2=2+2+2+3$, so that $a(9)=5$. Express the generating function $F(x)=\sum_{n \geq 0} a(n) x^{n}$ as a rational function.
Hint. Find a recurrence formula first.
2. (This is Exercise 1.44a in Stanley.) Show that the total number of cycles of all even ${ }^{2}$ permutations in \mathfrak{S}_{n} and the total number of cycles of all odd permutations in \mathfrak{S}_{n} differ by $(-1)^{n}(n-2)$!.
Hint. Generating functions for Stirling numbers of the 1st kind.
3. Let k and n be positive integers. Prove that the following are all equal:

- The number of partitions of n where each part occurs at most $2 k-1$ times.
- The number of partitions of n with no part divisible by $2 k$.
- The number of partitions of n where parts that are divisible by k occur at most once each.

4. Give a combinatorial proof of Stanley's equation (2.14), the recurrence formula $D(n)=(n-1)(D(n-1)+D(n-2))$ for the derangement numbers.
Hint. Either n is in a 2-cycle or n is not in a 2-cycle.
5. Let $M(m, n)$ be the number of $m \times n$-matrices with entries in $\{0,1\}$ such that every row and every column contains at least one 1. Prove that

$$
M(m, n)=\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\left(2^{m-k}-1\right)^{n}
$$

[^0]
[^0]: ${ }^{1}$ Recall that a composition of n is a way to express n as a sum of positive integers, where the order of the terms (or, parts) matters.
 ${ }^{2}$ Recall that a permutation $\pi \in \mathfrak{S}_{n}$ with k cycles is even if $(-1)^{n-k}=1$. Otherwise, π is odd.

