MAI0102 ENUMERATIVE COMBINATORICS, 2018 PROBLEM SET 3

Each problem is worth ten points. You may get partial credit for non-useless, non-perfect solutions. The problems are not ordered by difficulty. Hand in your solutions no later than November 8.

1. Give a direct proof of the identity $N_{0}=\sum_{k}(-1)^{k} r_{k}(n-k)$! (formula (2.23) in Stanley) using the principle of inclusion-exclusion.
2. Let $f_{d}(m, k)$ be the number of ways to choose k points from a collection of m distinguishable points arranged in a circle if each pair of chosen points must be separated by at least d points. Show that

$$
f_{d}(m, k)=\frac{m}{m-k d}\binom{m-k d}{k} .
$$

3. Let $f(n)$ be the number of permutations $\pi \in \mathfrak{S}_{2 n}$ such that $i-n \leq \pi(i) \leq n+i$ for all $i \in[2 n]$. Show that

$$
f(n)=\sum_{k=0}^{2 n-2}(-1)^{k}(2 n-k)!\sum_{i=0}^{k} S(n, n-i) S(n, n-k+i)
$$

Comment. It is possible to simplify the above formula considerably. Thus, if you happen to arrive at a simpler formula for $f(n)$, I will accept that too. But don't cook up even more complicated formulae, please.
4. Let k and n be positive integers. Define a matrix M of size $n \times n$ with $\binom{k+i}{k+j-i}$ being the entry on row i, column j. Prove that all minors of M are nonnegative. Comment. Recall that $\binom{a}{b}=0$ if $b<0$.
Hint. Consider lattice paths with starting points and end points on two appropriately chosen straight lines.
5. A plane partition which fits in an $n \times n \times n$ cube is an $n \times n$ array of integers between 0 and n such that all rows and columns are weakly decreasing. Show that the number of such plane partitions is $\operatorname{det}\left(M_{n}\right)$, where M_{n} is the $n \times n$ matrix whose entry in position (i, j) is $\binom{2 n}{n+i-j}$.
Hint. Stare at the following picture:

