MAI0102 ENUMERATIVE COMBINATORICS, 2018 PROBLEM SET 5

Each problem is worth ten points. You may get partial credit for non-useless, non-perfect solutions. The problems are not ordered by difficulty. Hand in your solutions no later than December 6.

1. (This is closely related to Stanley's Exercise 3.57.) A poset P is a *forest* if $I_x \cap I_y = \emptyset$ whenever $x, y \in P$ are incomparable elements. (Here, we use the notation $I_p = \{q \in P \mid q \leq p\}$ for $p \in P$.) Suppose P is a forest with n elements. Prove that

$$e(P) = \frac{n!}{\prod_{x \in P} |I_x|},$$

where e(P) denotes the number of linear extensions of P. Hint. A possible approach is to induct on |P|. If P does not have $\hat{1}$, P is a disjoint union of two smaller forests. Then use the result of Stanley's Example 3.5.4.

2. Let d(n) denote the dimension of the incidence algebra, i.e. the number of nonempty intervals, of the partition lattice Π_n . Show that the exponential generating function satisfies

$$\sum_{n \ge 0} d(n) \frac{x^n}{n!} = e^{e^{e^{x} - 1} - 1}.$$

Hint. Stanley's identity (1.94b) is probably useful more than once.

3. (This problem is posed in Stanley, page 264.) Let η be the element of the incidence algebra of a locally finite poset P defined by $\eta(a, b) = 1$ if a is covered by b, and $\eta(a, b) = 0$ otherwise. Prove that $(1 - \eta)^{-1}(x, y)$ is the number of maximal chains in the interval [x, y].

4. A bit string (finite sequence of zeros and ones) is called *aperiodic* if it is not a power of a shorter string (string multiplication being concatenation). Thus, 110101 is aperiodic whereas $110110 = (110)^2$ and $101010 = (10)^3$ are not. Prove that every bit string is a power of a unique aperiodic string. In other words, show that if $u^m = v^n$ for aperiodic bit strings u and v, then u = v (and m = n).

5. Let p(n) be the number of aperiodic bit strings on n bits. Show that

$$p(n) = \sum_{d|n} \mu(d, n) 2^d,$$

where μ denotes the Möbius function of the divisibility lattice D_n . You may use the result of the previous problem even if you did not solve it.