MAI0102 ENUMERATIVE COMBINATORICS, 2018 PROBLEM SET 5

Each problem is worth ten points. You may get partial credit for non-useless, non-perfect solutions. The problems are not ordered by difficulty. Hand in your solutions no later than December 6.

1. (This is closely related to Stanley's Exercise 3.57.) A poset P is a forest if $I_{x} \cap I_{y}=\emptyset$ whenever $x, y \in P$ are incomparable elements. (Here, we use the notation $I_{p}=\{q \in P \mid q \leq p\}$ for $p \in P$.) Suppose P is a forest with n elements. Prove that

$$
e(P)=\frac{n!}{\prod_{x \in P}\left|I_{x}\right|},
$$

where $e(P)$ denotes the number of linear extensions of P.
Hint. A possible approach is to induct on $|P|$. If P does not have $\hat{1}, P$ is a disjoint union of two smaller forests. Then use the result of Stanley's Example 3.5.4.
2. Let $d(n)$ denote the dimension of the incidence algebra, i.e. the number of nonempty intervals, of the partition lattice Π_{n}. Show that the exponential generating function satisfies

$$
\sum_{n \geq 0} d(n) \frac{x^{n}}{n!}=e^{e^{e^{x}-1}-1}
$$

Hint. Stanley's identity (1.94b) is probably useful more than once.
3. (This problem is posed in Stanley, page 264.) Let η be the element of the incidence algebra of a locally finite poset P defined by $\eta(a, b)=1$ if a is covered by b, and $\eta(a, b)=0$ otherwise. Prove that $(1-\eta)^{-1}(x, y)$ is the number of maximal chains in the interval $[x, y]$.
4. A bit string (finite sequence of zeros and ones) is called aperiodic if it is not a power of a shorter string (string multiplication being concatenation). Thus, 110101 is aperiodic whereas $110110=(110)^{2}$ and $101010=(10)^{3}$ are not. Prove that every bit string is a power of a unique aperiodic string. In other words, show that if $u^{m}=v^{n}$ for aperiodic bit strings u and v, then $u=v$ (and $m=n$).
5. Let $p(n)$ be the number of aperiodic bit strings on n bits. Show that

$$
p(n)=\sum_{d \mid n} \mu(d, n) 2^{d}
$$

where μ denotes the Möbius function of the divisibility lattice D_{n}.
You may use the result of the previous problem even if you did not solve it.

