MAI0102 ENUMERATIVE COMBINATORICS, 2018 PROBLEM SET 6 —CORRECTED VERSION—

Each problem is worth ten points. You may get partial credit for non-useless, non-perfect solutions. The problems are not ordered by difficulty. Hand in your solutions no later than December 20.

1. Given positive integers m and k, define a poset P on the set $([m] \times [k]) \cup \{\hat{0}, \hat{1}\}$ by declaring that $\hat{0}$ is the minimum, $\hat{1}$ is the maximum, and $(x_1, y_1) < (x_2, y_2)$ in P if and only if $x_1 < x_2$ in the usual total order on integers. (In other words, $P \setminus \{\hat{0}, \hat{1}\}$ is the *m*-fold ordinal sum of *k*-element antichains.) Prove that the Möbius function of P satisfies $\mu(\hat{0}, \hat{1}) = -(1-k)^m$.

2. (This and the next problem are essentially Stanley's Exercise 3.129.) Let P be a finite poset equipped with a minimum $\hat{0}$ and a maximum $\hat{1}$. Suppose P has an automorphism f of order p, where p is a prime, such that the only fixed points of f are $\hat{0}$ and $\hat{1}$. Show that $\mu(\hat{0}, \hat{1}) \equiv -1 \pmod{p}$, where μ is the Möbius function of P.

3. Recall that Wilson's theorem states that $(p-1)! \equiv -1 \pmod{p}$ for any prime p. Prove Wilson's theorem by applying the result of the previous problem to the partition lattice Π_p .

Hint. Permutations of [n] provide automorphisms of Π_n .

4. Suppose P is a finite poset whose Möbius function satisfies that $\mu(x, y)$ is even for every x < y such that y does not cover x. Show that every closed interval [a, b], a < b, of P has an odd number of atoms.¹

5. For an integer $n \ge 2$, consider the poset of all simple² disconnected graphs on vertex set [n] ordered by inclusion of edge sets. Notice that the edgeless graph is the minimum $\hat{0}$. Add an artificial maximum element $\hat{1}$ and call the resulting poset G_n . Prove that $\mu(\hat{0}, \hat{1}) = (-1)^{n-1}(n-1)!$, where μ is the Möbius function of G_n . Hint. There is a natural closure operator on G_n whose image is isomorphic to the partition lattice.

¹Recall that an *atom* of a poset with a minimum element a is an element covering a. ²That is, no loops or multiple edges are allowed.