Assignment 2

Consider the differential equation

$$
u_{t}+A u_{x}=F, \quad 0 \leq x<\infty, \quad 0 \leq t
$$

where u and F are vector functions with two components, and $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
The initial and boundary conditions are

$$
\begin{aligned}
u(x, 0) & =f(x), \\
u^{(1)}(0, t)+\alpha u^{(2)}(0, t) & =g(t), \\
\|u\| & <\infty .
\end{aligned}
$$

Approximate the problem by

$$
\begin{aligned}
\frac{d u_{j}}{d t}+A D_{0} u_{j} & =F_{j}, \quad j=1,2, \ldots, \\
u_{j}(0) & =f_{j}, \\
u_{0}^{(1)}(t)+\alpha u_{0}^{(2)}(t) & =g(t), \\
\frac{d u_{0}^{(2)}}{d t}+D_{+} u_{0}^{(1)} & =F_{0}^{(2)}, \\
\|u\|_{h} & <\infty .
\end{aligned}
$$

1. Derive the Lopatinsky and the Kreiss condition for the IBVP problem. Investigate when they are satified. For which, if any, α-values can we conclude strong wellposedness ? Note that no interval for the α-values is given.
2. Derive the Godunov-Ryabenkii and the Kreiss condition for the numerical approximation of the IBVP problem and investigate whether or not they are both satisfied for all α in the interval $0 \leq \alpha \leq 1$. For which α-values can we conclude strong stability?
3. Challenge: Use the normal mode analysis and derive a strongly well-posed energy-estimate for the IBVP. The estimate must contain all the data F, f, g. You can pick a suitable α if you want.

Motivate your answers clearly !

