Exercises I

Consider the scalar initial value problem

$$
\begin{align*}
u_{t} & =a u_{x x}+b u_{x}+c u, \quad t \geq 0 \\
u(x, 0) & =f(x) \tag{1}
\end{align*}
$$

where $f(x)$ is 2π-periodic.

1. Prove that (1) is well posed if and only if there is a constant α such that

$$
\operatorname{Re}\left(-a \omega^{2}+i \omega b+c\right) \leq \alpha
$$

for all real ω.
2. Assume that $a<0$ is real. We know from class that the problem is ill posed if $b=c=0$. Are there any values of b and c that makes the problem well posed?
3. Assume that Re $a>0$. Prove that (1) is well posed for all values of b and c.
4. Assume that Rea=0. Prove that (1) is not well posed if $\operatorname{Im} b \neq 0$. What is the most general well posed form of the PDE if Rea=0?
5. Consider the first order system $u_{t}=A u_{x}$, where A is a constant matrix. Is it possible that the Petrovskii condition is satisfied for some constant $\alpha>0$, but not for $\alpha=0$?
6. Consider the PDE system

$$
u_{t}=A u_{x}+B u
$$

where A and B are real constant matrices. What is the condition on A and B for an energy conserving system, i.e., $\|u(\cdot, t)\|=\|u(\cdot, 0)\|$?

