Exercises II

Consider the scalar initial value problem

$$
\begin{aligned}
u_{t} & =a u_{x}, \quad t \geq 0, \\
u(x, 0) & =f(x)
\end{aligned}
$$

where a is a real constant and $f(x)$ is 2π-periodic.

1. Investigate the stability for the leap-frog scheme

$$
u_{j}^{n+1}=u_{j}^{n-1}+2 k a D_{0} u_{j}^{n} .
$$

What restriction on the time step is imposed by the von Neumann condition? What is the stability condition?
2. The leap-frog scheme requires data at two time levels t_{0} and t_{1}. Suggest a method for obtaining u_{j}^{1}.
3. Prove that the norm of the solutions to $u_{t}=a u_{x}-u$ is non-increasing with time. Find out if this is true also for the solutions u_{j}^{n} to the leap-frog scheme with $a D_{0}$ substituted by $a D_{0}-I$.
4. Derive the stability condition for the schemes

$$
u_{j}^{n+1}=u_{j}^{n}+k a D_{+} u_{j}^{n} .
$$

and

$$
u_{j}^{n+1}=u_{j}^{n}+k a D_{-} u_{j}^{n} .
$$

5. Prove that the Crank-Nicholson scheme

$$
u_{j}^{n+1}=u_{j}^{n}+\frac{k a}{2} D_{0}\left(u_{j}^{n+1}+u_{j}^{n}\right)
$$

is unconditionally stable.
6. Prove that the Crank-Nicholson scheme for $u_{t}=a u_{x x}\left(D_{0}\right.$ substituted by $\left.D_{+} D_{-}\right)$ is unconditionally stable if $a>0$.

