Exercises IV

1. Derive boundary conditions such that the initial-boundary value problem for

$$
u_{t}=-u_{x x x x}, \quad 0 \leq x \leq 1, t \geq 0
$$

is well posed.
2. Consider the approximation

$$
\begin{aligned}
\frac{d u_{j}}{d t} & =\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] D_{0} u_{j}, \quad j=1,2, \ldots, N-1 \\
\frac{d u_{0}^{I I}}{d t} & =D_{+} u_{0}^{I} \\
u_{0}^{I} & =0 \\
\frac{d u_{N}^{I I}}{d t} & =D_{-} u_{N}^{I} \\
u_{N}^{I} & =0
\end{aligned}
$$

Prove that the norm

$$
\|u\|_{h}=\left(\frac{h}{2}\left(\left|u_{0}\right|^{2}+\left|u_{N}\right|^{2}\right)+\|u\|_{1, N-1}^{2}\right)^{1 / 2}
$$

is independent of t.
3. (Stronger version of Assignment 2, part 1.)

Let Q be a semibounded difference operator satisfying

$$
(v, Q v)_{h} \leq 0
$$

for all v satisfying certain boundary conditions. The θ-scheme is defined by

$$
(I-\theta k Q) u^{n+1}=(I+(1-\theta) k Q) u^{n} .
$$

Prove that $\left\|u^{n}\right\|_{h} \leq\left\|u^{0}\right\|_{h}$ for $\frac{1}{2} \leq \theta \leq 1$.
Hint: Take the scalar product of $u^{n+1}-u^{n}$ with $k Q\left(\theta u^{n+1}+(1-\theta) u^{n}\right)$.

