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THE LAPLACE
TRANSFORM METHOD FOR

INITIAL-BOUNDARY-VALUE
PROBLEMS

10.1 SOLUTION OF HYPERBOLIC SYSTEMS
Hamm_&oﬂwugém_:o problems for systems with constant coefficients can be
solved using the Laplace transform. As we will see, the Laplace transform

method is often the only way we can decide on the stability of a given finite

&moww:nomoroEn.énoEz:wm&mEgg Eownnmomowanﬁhmwwwomﬁgmmog
(see Appendix A.2). ,

We consider the quarter-space problem for the system

R o [
|| bﬂ ﬁxtu_ + F, 0sx<e, r20 (10.1.1a)

where A is diagonal and

A .
>uﬁ \L“ A >0, AT <.
We prescribe initial data

ux,0) = f(x), (10.1.1b)

and boundary conditions

398

[z -, )l] < o= for every fixed &. (10.1.1¢c)
where LI and L' are constant matrices. We assume that F, f, and g are smooth
functions with compact support.

We know already that the above problem is well posed if, and only if, L
is nonsingular. However, we arrive at the same conclusion using the Laplace
transform. We start with the following lemma.

Lemma 10.1.1. Consider the initial-boundary-value problem (10.1.1} with F =

g =0. It is not well posed if we can find a complex number s with Re s > 0 and
initial values f(x) with 0 < || f|] < = such that

wix, ) = e"'f(x), Res > 0 (10.1.2)
is a solution.

Proof. Assume that there is a solution of the above type. Define the sequence
{F; )Y by |

JUx)

1) = yFGam

te, lfill = L
Then
wilx, ) = e”*'f;(x),
are also solutions satisfying
lw; (.0l = &9, j = 1,2,

Therefore, the problem cannot be well-posed because we can construct solutions
that grow arbitrarily fast. This proves the lemma.

REMARK. If Eq. (10.1.1) had contained lower order terms, then solutions w
with Re s < 9 are permissible.

We will now give conditions guaranteeing that solutions of the type of Eq.
(10.1.2) exist.

Theorem 10.1.1. A solution of the type of Eq. (10.1.2) exists; that Is, the initial-
boundary-value problem is not well posed, if the eigenvalue problem
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sp = mn: 0<x<oo cre 1s an eigenvalue s with Res > 0. In fact, all s with Res > 0 are
dx’ - ’
with boundary conditions
LIH(0) + L'ok(0) = 0 leol? < oo hus, for a well-posed problem, L/ must be nonsingular, and, therefore, we

write the boundary conditions in the form

has an eigenvalue s with Res > 0.

The eigenvalue problem has an eigenvalue s with Res > 0 if, and c:@
is singular. Therefore, by our previous result, the initial-boundary-value
lem is well posed if, and only if, the eigenvalue problem (10.1.3) has no:
value s with Res > 0.

#10,8) = wﬂauo + gl (10.1.6)

8, they are necessarily of the form we have discussed earlier.

/¢ can now solve the problem using the Laplace transform. Without restric-
on, we can assume that f(x} = 0. Otherwise, we introduce a new variable
u.— (D) f(x), K0) = 1, h smooth with compact support. We define the
mmmmnn transform by

Proof. If there is an eigenvalue s with Re s > 0, then

wix, 1) = e™e(x)

oo

w(x,s) = e ulx, dt,
0

= if + 9, £y real, n > 0. (10.1.7)

is a solution of the type of Eq. (10.1.2). Therefore, the problem is =oﬂ we
posed. :

Let us now derive algebraic conditions such that there are no eigenvalue
with Res > 0. These conditions are necessary conditions for the wuoEn
be well posed. The general solution of Eq. (10.1.3a) can be written
form

wéwww From Section 9.2, we know that the solution of Eq. (10.1.1) satisfies.
¢ Q.m% estimate. Therefore, the right-hand side of Eq. (10.1.7) is finite for
ry m > 0.

ﬁaﬁ.ﬁv — N.X_PJI_HAENAOY ﬁ:@& - Nmﬁbtleﬁ:AOv. W% U_an AMO.HU—NV

For |l¢|| < o, a necessary and sufficient condition is that

oo oo oo

e tu,dt = A e u dt + eS'Fdt = Al, + F.

; 0 0 0
¢'(0) = 0. - ( _
Therefore,
Then the relations (10.1.3b) are satisfied if, and only if, .
L1510y . e udt = eulf + s e udt
0

There are two possibilities.

plies (observe that £ = 0)

1. L' is Nonsingular. Then the only solution of Eq. (10.1.5) is ¢'/(0).
and there is no eigenvalue s with Res > 0. In this case, we know, fro
our previous results, that the problem is well posed.

st = AR+ B st o= ATRY 4 P (10.1.8a)
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#0,5) = RE©,5) + 8", 2,9 < e CqllEt? < @) E) - ws:e_%cszeé.

Because the eigenvalue problem (10.1.3) only has a trivial solution, the mo_.ﬂ_.mab
i of the homogeneous problem (10.1.8) is identically zero. Thus, the inhomoge-
neous problem. (10.1.8) has a unique solution. We can write down the mo_sﬁoa

n 1 - 1 . n
S TP+ —— P12 - < @0, s), AR, 5)),
2 27 2

explicitly:
1 a
- ¥ Iy Yoy dn-1 4 #!||? < constant { — ||FU|)? + |#70, %) .
Heys) = - | e AT e DAY Ry 5 dy, il ns s IEZ" + 12700, )
x . L
Wlx,5) = PRSIy L/, dy + @il o (1 sing the boundary condition we obtain

0

where #//(0, 5) is determined by Eq. (10.1.8b).

N | R
. #4(0,5)|* < constant(|3"/[* + [&/(0,)|*) £ constant I8 + = ||F*Y}.
Using Eq. (10.1.9), we can estimate #(x, 5) in terms of F, /. Howeyver, itis. 1

easy to use energy estimates directly. We take the scalar product of Eq. Co.w..m.m.v : .
with &' and #!/, respectively, and obtain . herefore,
~f Al Af Al Alni T; a7 ol T ol . [
@5t + GHLED = (@ N + Wit,il) + @ F) + &8, nllal? < constant | — B + [}, (10.1.102)
n

1 -

or [0, 5)[% < constant | 1g"]* + — ||F|]2} . (10.1.10b)
7

p]|@]> = Re(@, A2y + Re (@, F7).

verting the Laplace transform gives us the solution of our problem
Integration by parts gives us 1

e Mulx,t
(x,1) o

e alx, it + n)dg,
Re (i, A't) = -3 (80,9, A 0, 5)),
w:nr by Parseval’s relation, Eq. (A.2.17), we obtain, for any # > 0 and s = i{+7%,
and, therefore,

. 1 h
~ —~2n . 2 [ T M.&
nl&1P + 1410, A, ) < &) 1F]s ¢l ol dr = = § N, 9 dg,
= 1 » 1 ..
< constant — IFC ol + = 17?4t
that is, s A\ T 7
= 1 1
] c = constant | & ** 7 lFC-, ol + - g du
Nl < = I1FY,  |#o,9] € —= [IF]. 0
) 72

(10.1.11a)



404 THE LAPLACE TRANSFORM METHOD TION-OF PARABOLIC PROBLEMS 405

.-. mlmi_:ﬁo,&_u&
0

onumBEm;»i W__m.h.ua__m +_w3_m§.
)

Thus, we can estimate the solution in terms of the data. In Section 10.3; we

use this estimate to define another concept of well-posedness. = Apy, 0 £ x < oo (10.2.3)
= ap®0), P00 = 80,  flell < (1024

EXERCISES s . . .
igenvalues in the right half of the complex plane. In that case, there are

s that grow arbitrarily fast.

10.1.1. Assume that f(x) # 0 in Eq. (10.1.1b). Derive the estimate Qo. : )
ur example, we have the following theorem:

by applying the Laplace transform technique to & = u ~ A()f(x)
described above. . . :
. ‘heorem 10.2.1. The problem [Eqs. (10.2.3) and (10.2.4)] has an eigenvalue

10.2. SOLUTION OF PARABOLIC PROBLEMS

We start with an example. Consider the quarter-space problem for a parabo

system . . . .

Y S . Proof. The general solution of Eq. (10.2.3) with || || < eo for Re s > 0 is given
i; = Aty + F, 0€£x <o, t 20, . .

u(x,0) = f(x),

where oD = mlz.._hmh@c.w w,mv,._.i\u%\n >0,
¥ = constant, j = 1,2
= vS O _ . _ : )
A= 0 M|’ A; = constant > 0, j =12, u= : . boundary conditions are satisfied if, and only if,
with vogg conditions 1 o 0 S 1026
12 N -1/2 =0, = . 2.
—B\; / A 21 Y Y ¥@

0,1 = au®©,1) + V),
W@0,1) = puP©0.1) + gD,
-, O

is proves the theorem.

A

[

where « and 8 are constants. Let us first investigate under what conditions on now show that if Vmﬁ\ ‘- VHC 2af + 0, then the problem has a unique

o and B we can obtain an energy estimate. Here we assume that g(!) = g
Integration by parts gives us

~

A, + F,
Qm@mpnv + WSQY

]
=
If

& .
— Ml = =25, Aw) - 2B + @ F) + (F,u),

=
P
=
—_
=
T
~
It

—

¢
i
f

i
|
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,E_m..ungu 10.2.2. The problem (10.2.11) has a unique solution ,E:.&@H.:.
estimate of type (10.2.10), for n > nq, if, and only if, Eq. (10.2.12) ha
eigenvalue 5 with Res > 0, . :

9* 0 .
m.n\»%.rwﬂ._.ﬁu A+ A =2 2a] > 0.

mplicity, we assume that A, B, and C and the coefficients of Ly and L;
nooth functions of x and . We also assume that F, f, go, and g;, are
bounded functions. To guarantee that the compatibility conditions are
fied, we assume that F vanishes near the boundary and the initial line and
%), go(t), and g;(¢) vanish near x = (, 1 and ¢ = 0, respectively. Of course,
tringent conditions need be met if only solutions with a fixed number of
tives are of interest. As before, one can also extend the solution concept
ude generalized solutions. .

ection 9.4, we have discussed two different definitions of well-posedness.
differ with respect to the estimate required. All bounds are natural in the
text of energy estimates. Unfortunately, energy estirmates are not available
nany. circumstances, and, therefore, other techniques must be used. A very
rful tool is the Laplace transform, which we used in the last two sec-

This theorem is valid for much more general boundary conditions

ﬁ . .
ity du i

M By s + By 5 = 0, x=0. (10

L—”

EXFRCISES

10.2.1. Formulate and prove the analogy to Lemma 10.1.1 for parabolic sys
tems

Uy = Abyy. -
en:using the Laplace transform, it is convenient to assume that f(x) = 0.
ection-10.1, how to transform the problem so that this condition is satisfied

2§ explained.

cwmmn. we assume that the system (10.3.1) has constant coefficients. As
revious sections, we introduce the Laplace transform

16¢.2.2. Prove Theorem 10.2.2.

10.3. GENERALIZED WELL-POSEDNESS

We again consider the system of partial differential equations . o
x,8) = L— e ulx, 1) dt, s=i 4+, Enrea, 3 >0

duj/ot = Pu + F, 0<x<1, 20, (10 0

with initial data the solution of the reselvent eguation

~

F,
2o,  Lit(l,5) = g (10.3.2)

sI - P
Loi(0, 5)

li

u(x,0) = f(x), 10

il

and boundary conditions

ical estimates for the solutions of Eqgs. (10.3.2) are listed below [see Egs.

Lou(0,1) = go(®), Liu(l,8) = g1(2). (16 10) and (10.2.9)):

We assume that the system of differential equations is either symmetric hyper Consider Egs. (10.3.2) with homogeneous boundary conditions (g; = 0}.

bolic, that is, There is a constant 1o and a function K(y), with lim, .. K(»} = 0, such
that, for all F and all s with » = Res > ¢,

P=A— + B, A=A
ax

NaC ol + 8llaC-, ) < KamlFC, ). (10.3.3a)
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2. Instead of Eq. (10.3.3a), for ithomogeneous boundary oou&mom,w,

. wﬂﬂrﬁ&oﬂa“ K(n) — e asy — yo.
‘We now use these estimates to introduce a new concept of well-posedness

laC-, )1 + 8l -, O < K@) (IFC, ]2 + 2] + |2:()P). (10

(This estimate is stronger than the one derived for the parabolic’ pro
in Section 10.2.)

if the differential operator P is defined on the function space satisfying
homogeneous boundary conditions Loyv(0) = L1(1) = 0, the operator (sI-P)-

called the resolvent operator, and the resolvent condition is usually formula & =0  for hyperbolic problems,

as
5 > 0  for parabolic problems,
lsT — Py E. nd no, K(q) are constants that do not depend on F. We call the problem
Res . ongly well posed in the generalized sense if the estimate (10.3.4b) holds
Our conditions (10.3.3a) and (10.3.4a) are generalized forms of the Hnmo? ZENH The initial and boundary conditions can be made homogeneous by
condition. | . ract

By Parseval’s relation, these inequalities imply the following ommﬁmﬁm

du/ot
v(x,0)
Lov(0,1)

o
(=~
g
+
T
e
A
e
A
=
b 8
WY
L

[ e a0l + sl piPyas

0

I
L

Liv(l,t) =

?

< 5;0 FMNFC,0Pdn, m > no,  Lim K@) = 0

g ree

Ho.w 3
A ere F = Py ~ /ot + F. Assuming that the problem is well posed in the
43 ﬁ&Ema sense, we obtain the estimate (10.3.3b) as ¥ — v, F — F. Hence,
get an estimate for # = v+ ¥, but the bound depends on dgo/dt, dg /dt,

@, e ({lu(-,DI1* + dllux(-, )P de
&x. and also on d*f/d* in the parabolic case.

0

< 5;@ IR0 + 1g0®P + 0P de,

7 > 1q, lim K(y)

7 e

..r.nnm are many other ways to define well-posedness. Any definition of well-
edness must satisfy the following requirements.

. For smooth compatible data, the problem has a smooth solution.
- There is an estimate of the solution in terms of the data.

It should be stable against perturbations of lower order terms; that is, if
we perturb the differential equations by changing the lower order terms,
then the solutions of the perturbed problem should also satisfy an estimate
~of the same type.

:4. It should hold for a large class of problems.

' 5. There should be equivalent algebraic conditions that are easy to verify.

respectively.

For the examples treated above we have 59 = 0. However, if the mao?.
lem has variable coefficients, lower order terms, or two boundaries, then: wi
wﬁd to choose ng > 0. The last two of these generalizations will be discussed
ater.

Becauyse the integrals are taken over an infinite time interval, the constant:
K(n) necessarily goes to infinity at some point 4 = 5. For example, if F =
g =g =0 fort 27, then the integrals on the right-hand side of the estimates

are finite for anv valne of v However the anlutian i1 3o in canaral nanmrara fae
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mates can be verified for symmetric first-order systems and for parabolic mwm
tems by the use of integration by parts. However, there are large classes o
problems that cannot be investigated in this way. By using Definition Ho.u...
we can cover a much wider class of problems.

The concept of strong well-posedness in the generalized sense does not Em
the same role for parabolic equations as for hyperbolic equations. It holds: fo
parabolic equations oE% if all boundary conditions are derivative ooz&nom
that is, rank (Ry;) = m in Eq. (10.2.11c). :

We now derive a number of fundamental properties for our new oomomwﬁw

e, fort 2 0,

#0 =10, " fort <0,

“we obtain

@a oo

__i.b__m&m iTJ&QS&
| 0 0

oo 00

- ot = 7)dt) Hz)dr
0 1]
B _.

a 2% (=
S — | e™IFC,|*dr - 4% lwe( -, DI dt;
sm 0 n 0

Theorem 10.3.1. Assume that the differential operator P is semibounded :5.
the boundary conditions (10.3.1c) such that

HNOAF..GGV = im__c_k__u + Q_wc__wu

where 8 > O if P is parabolic and 6 = 0 if P is hyperbolic. Then, the ﬁwcwhm_s
(10.3.1) is well posed in the generalized sense. Lo
w(- . 0ll2de + 28 | llws(-, Dl de <

= | M| F(,l*de
0 0 n 0

Proof. Introduce into Eq. (10.3.1) a new variable, w = e™"‘u. Then, we obtain

ow/or = (P — qlw + ¢ ™F. hus, Eq. (10.3.3b) is satisfied with

Therefore, for 7 =9 —a =%y >0,

1 21
d K G-aF 7
a7 WP < = 28lwall® = 20 — Wl + 2w, e P, _
N ‘ ad with § replaced by 28/70. . .
< - 28w - lwl® + L le™™F |12, The existence of a smooth solution can also be verified and, therefore, the
) ' 7 theorem is proved.
Thus, ..oé we will prove that lower order terms do not affect generalized well-
osedness.
-, ol < u mumAT:AQQ.V - H(r)7, heorem 10.3.2. Assume that the problem (10.3.1) is well posed in the gener-
_ 0 lized sense. Then the perturbed problem
where dw/dt = (P + Pow + F,  0<x<1, 20,
. w(x,0) = O,
H =
G) = = e FC.nl?,  He) = 28]wil-, D)l Low©,8) = 0,  Lw(1, 9
i
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Proef. Formally Pyw can be considered as a forcing function, and by mmmEu

tion we have > = -, Dl = ), lucooPdx  for B (1035)
. ol

o = w0l = {u(x,0)[*dx,  for Eq. (10.3.6),
AW DI + Sllwi(-, D) de _ 1.

’ o = la(, Dl . = lux, )| dx, for Eq. (10.3.7).
< va (| PowC-, DI + [FC-, 0D de. ).

. .ﬁoé_ prove the following theorerm.
By choosing 5 sufficiently large and, therefore, K(y) sufficiently small an i

recalling that 6 > 0 for parabolic problems, we can move the Pgw term ¢

rem Heum The problem (10.3.1) is well posed in the generalized sense
the left-hand side giving us Fin

uarter-space problems (10.3.5) and (10.3.6) and the Cauchy problem
re: all well posed in the generalized sense.

[ e im0 + st i

Let ¢1(x) € C~(—o0,) be a monotone function with .
0 e

< N,DQ_O._. eMFC, )P dt, m >, lm K(p) = 0. _ 1, forx<1/8,
0 ! erlx) = 0, forx=1/4,

The existence of a solution can also be assured and the theorem is proved

As we will see later, it is convenient fo treat each boundary by itself. Fo @) = o1 (1 — x),
that purpose, we define the two quarter-space problems

w3z} = 1 - o1(x) — @a(x).

du/ot = Pu + F, 0<x <o, 20

>

u(x,0) = 0,
.ﬁogﬁounv = Ou ﬁ“_.o.m Ew..ﬁk.u mv - ﬁ.._. AHVSOP uvu .w = HuNu wu
N«“_. AH» Nv = ﬁ.‘_ AHVT.AHu HVu .N = .,_,u Nq wu
du/ot = Pu + F, -0 < x<1, 120,
u(x,0) = 0, =0 forx <0, and sy =0forx 20, x =1,
Liu(l,7) = 0, (10.3.
and the Cauchy problem
du/dt = Pu + F, o0 < X < oo, 20, (w)y = Puy + Piu + Fy, 0<x <o 120,
: 0 =0
u(x,0) = 0. (10.3.  (, u
Lo (0,1) = 0, (10.3.82)
The coefficient matrices in P are extended in a smooth way to the whole x axis <1 >0
so that they-are constant for large |x|. We assume that the functions F have () = Pup + Pou + F, e <X » 120,
compact support in all three cases. wa(x,0) = 0,
Definition 10.3.1 of well-posedness in the generalized sense is now the same Lis(1,8) = O {10.3.8b)
for each one of these three nroblems. hut with the norma definad 124, ’
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(u3);
us(x, 0)

Pus + Psu + Fi,
0.

an also. use the above representation to prove the existence of solutions
ginal problem. By construction, # = i) + u2 + u3 is a solution of the
roblem for x € [0, 1]. This proves the theorem.

Here {F; 1 are bounded matrices in the hyperbolic case. For parabolic eq;
tions, {P; )} are linear combinations of x and its first derivatives. .

Now assume that the two quarter-space problems and the Cauchy problem
are well posed in the generalized sense. The solutions of Eq. (10.3.8) satisf

erl mmo...wo difficulties in generalizing Definition 10.3.1 to several space

.wn.n.mn.mﬁ the L, norm over @ and d{I, respectively. As we show later in
m 10.6, we can split such a problem into a Cauchy problem and a quarter-

_ (g3 + Bl ) dt blem.

0

o< ﬁg;c MR, + Nl + ol ),
n >0, A

[ el + stz par

< Ky(n) L_ MR, + ulZ, + llucd? ) dr,
7 > 1 (10.
‘— (2 + Bllusel )it

]

.

<Kl [ ARSI + Tty + sllal s P - she =0,
ausv 73, , (10.3.9¢ Lo (0) = Lip(1) = 0, (10.4.1)
Here we have used the fact that the functions #; were smoothly extended ; sequence of eigenvalues s, j = 1,2,..., with
the coefficients of P; vanish outside the intervals 1/8 <x < 1/4,3/4 < x <! lim Res: = oo (10.4.2)
The inequalities are added and » is chosen large enough so that the __=__w.. joe ' .

iz, __w; terms can be moved to the left-hand side. Observing that u= u; +u-

for 0 £ x £ 1, we obtain - Assume that there is such a sequence. Denote the corresponding eigen-

ons by ¢; (x) with |[; (-)|| = 1. Then

[t + ollucl s

. ui(x, 1) = e¥p;(x) (10.4.3)

w0 3 : .
S ooumﬁmau_. @2t M A__E.__w.H + &?...LWWLV& are solutions of Eq. (10.3.1) where
0 .
= i (x,0) = p;(x), o=z =F=0
v 3
< Ka(n) .o,c e M 175115, d orresponding to Lemma 10.1.1, the relation
i=1
- — I .uM .
< Ks(n) .o. eFZ dt,  n > na, o CoDN_ rese
0 [lat; (-, O)]

where Iim, .. Ks(n)=0. ‘tells ns that the nroblem cannot he weil nosed. This oroves the theorem.



the problem is well posed in the generalized sense.
On the other hand, the boundary condition (10.4.13c) gives us

M A
150,9)] = 1512190, )| m_“|_ 1612,

that is,

|s[*

I a2 < T 20 nén2
Ll < 5 1FE + S e (10.414)

One can prove that this estimate is sharp and, therefore, that the estimate
(10.3.3a) does not hold because iim, .. K(n) # 0. One might think that the
definition of well-posedness could be changed such that the last case would be
included. However, consider the strip problem

U + U, = F, 0sxs51, =0,
w; — Wy = Qu ,

u(x,0) = wix,0) = 0,
with boundary conditions
u(0,8) = w(0,1), w(l, 1) = u(l,1).

The corresponding eigenvalue problem is

se + ¢ = 0,

h_w‘\ - .ﬂ\& = Ow

@) = s (0), ¥ = ¢(1),
that is,

=€), = eTly,
where

ﬁ I —se™ 0] 0
e’ -1 2G5 I

s = . (10.4.15)

This equation has solutions with arbitrarily large Re s (see Exercise 10.4.2), and,
therefore, the strip problem is not well posed in any computationally suitable
meaning.

One can geometrically explain what happens. The characteristics that support
w leave the strip at the boundary x = 0. To obtain u(0, ), we have to differen-
tiate w; that is, we lose one derivative. The value u is transported to the other
boundary, and there it is transferred to w through the boundary condition. This
value is again transported to the boundary x = 0 and loses another derivative
when its value is transferred to u. Thus, we lose more and more derivatives as
time increases.

EXERCISES

10.4.1. Prove that the estimate (10.4.14) is sharp, that is, that Eq. (10.3.3a) does
not hold.

10.4.2. Prove that Eq. (10.4.15) has solutions s with arbitrarily large Res.
10.4.3. Prove by direct calculation that the eigenvalues s of

s + ¢ = 0,
0<x<1,
_,m.ﬁ\ - ‘_N\H = Ou
s (0) = ¢ (0),
Y (1) = ¢ (1),

satisfy Res < 7o = constant in agreement with the generalized well-
posedness of Egs. (10.4.12a) and (10.4.12b).

10.5. HYPERBOLIC SYSTEMS WITH CONSTANT COEFFICIENTS
IN SEVERAL SPACE DIMENSIONS

In this section, we consider hyperbolic systems

u, = Auy + Bu, + m. 2 wﬂwlm“.v u+ F (10.5.1a)

in the quarter space x 2 0, —eo <y < e, ¢ 2 (). For = 0, we give initial data
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ux,0) = f(x), X = (x,y) (10.5.1b)
and, at x = 0, we prescribe boundary conditions

hotmouurﬂv - %Au\umvg —o0 L Yy < o9,
lu(-, O] < oo, (10.5.1¢)

which are of the same form as in Eq. (10.1.1c).

We assume that all the coefficients are real and A is nonsingular. We also
agsume that F and g are 2x-periodic in y, and we consider solutions that are
27-periodic in y.

We want to derive algebraic conditions guaranteeing that the above problem
is well posed or strongly well posed in the generalized sense. Corresponding to
Egs. (10.3.3) and (10.3.4), the estimates are now defined as integrals over the
domain 0 £ x <o, 0 <y < 2x. Corresponding to Lemma 10.1.1, we now have
the following lemma.

Lemma 10.5.1. Consider Eq. (10.5.1) with F = g = 0. The problem is not well
posed if we can find a complex number s with Re s > 0, an integer w, and initial
data

ux0) = €% (x),  |le ()l < oo,
such that
u(x, 1) = e (x) (10.5.2)

is a solution of Eg. (10.5.1) (the Lopatinsky condition).
Proof. If Eq. (10.5.2) is a solution, so is

ﬁaﬁunuwv — mm::mewc\ﬁ Qakuq

for any positive integer n. Therefore, we obtain solutions that grow arbitrarily
fast and the problem is not well posed. .

We now give conditions such that solutions of the form of Eq. (10.5.2) exist.
Substituting Eq. (10.5.2) into Eq. (10.5.1) gives us

s¢ = A, + iwBp, 0<x < oo, (10.5.32)
Lo (0) = 0, o ()l < ee. (10.5.3b)

As before, we have the lemma.
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Lemma 10.5.2. There is a solution of the form of Eq. (10.5.2) if, and only if,
for some fixed w, the eigenvalue problem (10.5.3) has an eigenvalue s with
Res > 0.

REMARK. w need not be an integer, because, if we have a soklution for s, w,
then we also have a solution for s/[w|, w/|w] = £1.

By assumption, A is nonsingular, and we can write Eq. (10.5.3a) in the form
@ = Mo, M = A™Y(sI - iwB).
We need the following leruma.

Lemmma 10.5.3. Assume thar the system (10.5.1) is strongly hyperbolic. Then
there is a constant & > 0 such that, for Res > O, the eigenvalues k of the matrix
M satisfy the estimate

-|Rek| = &|Res|. (10.5.4)

Proof. Let 2 be a real number, and consider

A NsI - iwB) — i8I}, -
(sI - iwB — iBA)Y 'A.

M - D!

It

Ii

By assumption, the system is strongly hyperbolic, and, therefore, there is a
transformation 7 = T(w, §) with sup,, 5(|T| |7 |} < oo such that

8 0
T wB + BAT = = A, A; real.
0 A
Thus,
(sI - iwB — iBA)'A = T(sI ~ iA)1T7'4;
that is,

| — i < T)T 7 |A] - |Gsf — Ay,
< §|Res|™, & = ATV 7], (10.5.5)



which implies |« — i8] 2 5|Re s|. Because f is arbitrary, we choose 8 = Im,
and Eq. (10.5.4) follows.

The last lemma gives us the following lemma.

Lemmma 10.54. Assume that the system (10.5.1a) is strongly hyperbolic.
For Res > 0, the matrix M has no eigenvalues x with Rex = 0. If A has

exactly m — r negative eigenvalues, then M has exactly m — r eigenvalies «
with Rex <0, for all s with Res > 0 and all real .

Proof. The first statement of the lemma is a weaker statement than Eq. (10.5.4).
The eigenvalues x of M are continuous functions of «. Therefore, the number
of x with Re x < 0 does not depend on « since Re x cannot change sign if we
vary w. In particular, for « = 0, we obtain

M = sA7),

and the second statement of the lemma follows. i

Assume for a moment that the eigenvalues of M are distinct and denote by
Kis...,Km-r the eigenvalues with Rex < 0. Then, the general solution of Eq.
(10.5.3a), belonging to L, can be written in the form

m-r
. KiX
P = M ojye’.
j=1 )
Here the y; are eigenvectors satisfying

,\E‘ue. = 5_..&".

Substituting this expression into the boundary conditions gives us a linear sys-
tem of equations for ¢ = (1, 02,...,0,,_,), which we write in the form

Cis,0)o = 0. (10.5.6)
There is a'solution of the form of Eq. (10.5.2) if Eq. (10.5.6) has a nontrivial

solution.

If the eigenvalues of M are not distinct, then we can still write the general
solution, belonging to L, in the form

0= D 0, (105.7)
J

where now ; {x) are polynomials 1n x witi Vector COeIlCIents Conaining 41o-

gether m — r parameters o;. Therefore, we also obtain a linear system of type

{10.5.6) in this case.
We have shown the following theorem to be true.

Theorem 10.5.1. The initial-boundary-value problem (10.5.1) is not well posed
if, for some s with Res > 0 and some w,

Det (C(s,w)) = 0.

Now assume that the eigenvalue problem (10.5.3) has no eigenvalue s with
Re s > 0. We want to show that we can solve the initial-boundary-value probiem
using Fourier and Laplace transforms. As before, we assume that the initial data
are zero. By assumption, the data are 2x-periodic in y, that is, we can expand
them into Fourier series with respect to y. For example,

oo

F(x,0) = M Fix, w, DY

£ = —o0

Therefore, we can also expand the solution into a Fourier series

oo

u(x,t) = M ix, w, He“.

w=—oo

Substituting this expression into Eq. (10.5.1) gives us, for every frequency w,
a one-dimensional problem

i, = A, + iwBi + F,
i(x,w,0) = 0,
Loi0, @, = 3w, D). (10.5.8)

We can solve Eq. (10.5.8) using the Laplace transform. The equation

@a

m@.e:@u .w. mémeﬂ,e.&&
0

satisfies

A

skt = Ay + iwBi + F, l&]] < ee,
Lotif0, w,5) = 8w, s). (10.5.9)
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By assumption, the eigenvalue problem (10.5.3) has no eigenvalue with Res >
0, and, therefore, we can solve Eq. (10.5.9) for Res > 0 and every w. Inverting
the Laplace and Fourier transforms gives us the desired solution.

By Parseval’s relation, the estimates (10.3.3a) and (10.3.4a) now take the
form

&, @, 9 < KIFC-,w,9)|? (10.5.10)
and
G-, 0,00 < K@ EC,w,9)|* + [3(w, )]?), ((10.5.11)

respectively. Here K(n) does not depend on w. .
We now consider the case where ¥ = 0 and write the differential equation
(10.5.9) in the form

i, = 1A' - W' B = TMi,
Lofi(0, w,5) = g(w,s), (10.5.12)

where

|52 + w2, 5 =

By Lemma 10.54, for every 5, with Res” > 0, the eigenvalues « oﬁg
split into two groups. By Schur’s lemma, we can find a unitary transformation
U=U(w’,s) such that

/ r F 4 ! 7 E E
U, s W(w’, U, s') = — o: Ew_

where the cigenvalues « of My; and M, satisfy Rex < 0 and Rex > 0, respec-
tively. Substituting a new variable w = U*# into Eq. (10.5.12), we obtain

~ ] AT
s\_w« = MW + .ESJMS\ y
#.vw_. = ﬂgwmeﬂ:_

LoUW = Cl(e’,s MW (0,0,5) + Cl(w", s )W (0,w,s) = 2. (10.5.13)

Since we are interested in solutions with ||w|| < oo and the eigenvalues of M,
have a positive real part, it follows that
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‘@R\ﬁevmv = m.%:agmo_ewhv‘ W =0,
Cl(’, 30, 0,5) = & (10.5.14)

There are two possibilities: Firstly, there exist 5., w, with Res, =2 0 and
sequences s,, ), with lim, .. s, = 5%, lim, .. w), = w} such that

lim (C/ (@), 507! = oo (10.5.15)

¥ oo

One can prove that we can choose U such that it is continuous at @}, 5%. There-
fore, Eq. (10.5.15) holds if, and only if,

Det (C'(w?,s5)) = 0.

If Res, > 0, then the homogeneous equations (10.5.14) have a nontrivial solu-
tion and, therefore, s = 757, are eigenvalues of the eigenvalue problem (10.5.3)
for w = 7w,. Thus, the problem is not well posed in any sense. If Res, = 0,
then we obtain a solution of Eq. (10.5.3a) that satisfies Lo = 0 but might not
belong to £,{0, <) because some of the eigenvalues of M), might be purely
imaginary [cf. Eq. (10.5.4)]. We make the following definition.

Definition 19.5.1. If Det (¢! Wy, 5:)) =0, where 5 is purely imaginary, then s,
defined by s« = 5'V/|54)? + w? is called a generalized eigenvalue of the eigen-
value problem (10.5.3) if || ¢|| & L,(0, o).

REMARK. Even if s, is purely imaginary, the corresponding eigenfunction @
might belong to L,(0, o), that s, Rek, <0,»=1,...,m—r. In such a case s,
is an eigenvalue.

The theory for the case with generalized eigenvalues, or eigenvalues on the
Imaginary axis is incomplete. In some cases the mnitial-boundary-value problem
is well posed in the generalized sense, in other cases it is not. We discuss this
in more detail for difference approximations.

Secondly, the alternative to Eq. (10.5.15) is that (C7 (w’,5))7! is uniformly
bounded, or equivalently, that the determinant condition is fulfifled;

Det (C'(w’,5)) 4 0, @[ <1, |5 <1, Res” 2 0. (10.5.16)

This is a strengthened version of the Lopatinsky condition given in Lemma
10.5.1. We now have the following lemma.

Lemma 10.5.5, Consider the initial-boundary-value problem (10.5.1) with f =
F =0 and with g satisfying [ [I™ |2(y, )12 dy dt < oo, Then there is a consiant
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K >0 such that its solutions satisfy , . | e arguments above, we get the following lemma.

«. The Kreiss condition is satisfied if, and only if, the eigenvalue
.w ) has no cigenvalue or generalized eigenvalue for Res = 0.

L. oo w2 .
% h u(0,y, HP dy dt < K b. ‘ﬁ s nlPdyd
0 Q 0 0 . E

if. and only if. Eq. (10.5.16) holds. main HmmEn of the theory is presented in the following theorem.
Proof. First assume that Eq. (10.5.16) holds. Then, becanse (C7)™! i

.5.2. Assume that Eq. (10.5.1a) is a strictly hyperbolic system. I
bounded, the solution w of Eq. (10.5.13) satisfies > P i s

s condition is satisfied, then the initial boundary value problem is
posed in the generalized sense.

[0, 0,9 < K|g@,9)°, Res >0,
, ot give a proof here. In applications it is not necessary to go through
m rmation process leading to the formulation (10.5.13). The general

n i of Eq. (10.5.9) with {[&]] < e for F=0andRes>0is obtained just
genvalue problem, and we artive at a system

where X is a constant independent of w, 5. The vector function & =
Eq. (10.5.9) with F = 0, and, because U is a unitary matrix we have E
Therefore,

[4(0,0,5)|* £ K|§w,s)], Res > 0. C(s,w)o = §, Res > 0, (10.5.19)

By Parseval’s relation, this inequality implies N . .
) 1s the matrix occurring in Eq. (10.5.6). With the proper normal-

the Kreiss condition is equivalent to

oo @2 oo @
.@ .@ 2110, y, ) dy &m& .q P g(y, D dy di, |
o Jo o Jo Det(C(s,)) # 0, ~ Res > 0. (10.5.20)

oo w2
m& b. lg(y.D*dy dr,
040 .

%% aching Ea Imaginary axis from the right. We demonstrate the procedure

Because the right-hand side is independent of %, Eq. (10.5.17) follows. meEn. mﬂ the end om this section.

Next assume that Eq. (10.5.17) holds. Then, by Parseval’s relation, we
the corresponding integral inequality in the Fourier-Laplace space, a
demonstrated above, this leads to the pointwise estimate (10.5.18b) fo
trary g. From this estimate, we obtain Eq. (10.5.18a), which is nﬂmZm_o
Eqg. (10.5.16). This proves the lemma.

We now make the following definition. If the Kreiss condition is satisfied, then the initial-boundary-value

trongly well posed.

Definition 10.5.2. Consider the system (10.5.9) for F=0. If its solutions satis
Egq. (10.5.18b), we say that it satisfies the Kreiss condition.

Because the constant X is independent of w’,s’, one might think that the
condition Res > 0 could be replaced by Res = 0. However, the reason f
keeping the stri¢t inequality is that it automatically selects the correct general
solution # through the condition |[Z]] < e, because the exponentially growimn
part is annihilated.

Ay O
0 A
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v: 0 V/IL 0
A= . > 0, Ay = K < {,
0 A 0 A

is diagonal. We first solve an auxiliary problem

v = Auvy + By,
v(x,0) = f(x),
70,y,0) = 0, o= @D, L e flog-, 0] < . (10.5.21)

For its solution, we have the energy estimate
d 2%
2 WP+ |7 @0,5,0, 400,300y = 0

that is,

lvC- Ol < llwe-, 0l = £

T plw T p2i
Cmin \) .— % 00,3, D)2 dy dt < % ﬁ (0, y, 1), A0, , D) dy d,
—MHMH 0 0 0 0

S [ FCHIP (10.5.22)

We assume that vx, ) is a smooth function of x, ¢. The difference w = y — v B
satisfies

wr = Aw, + Bwy,
w(x,0) = 0,
Low(0,y,1) = g(y,1), g = —Lov(0,y,8), |lw(-,D] < . (10.5.23)

If the Kreiss condition is satisfied, then
o @l
._. ._. |w(0,y, D> dy dt
0 Jdo
oo w2y
< oonmmq:._. ._. Je(y, ©)|* dy dt < constant || £()I|%.
0 Jd0

Thus, we can estimate the solution of Eq. (10.5.23) on the boundary. We can
use integration by parts to estimate ||w(-, )|l and obtain
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d 2
MI __4\_\.__”N = - AS\_AOL}NV“ ph».vcﬁouur vabwur
t 0
2
< noumﬁsm.«. [w(0,y, H)|* dy;
0

that is,

T m27
lw(-, D* < 8:%5; ‘— |w(0,y,2)|*dy dt < constant || £(-)]|%.
0 40 .

(10.5.24)

The estimates (10.5.22) for v yield the final estimate for & = v+w, which shows
that for symmetric hyperbolic systems the initial-boundary-value problem is
strongly well posed if the Kreiss condition is satisfied.

As an example, we now discuss the system

% Lo% o_% :e
R LR R

with boundary conditions

#00,y,0 = a0,y + g, (10.5.25b)

1

where a is a complex constant. Integration by parts gives us

gt = [ wonn] L 0] wo,y,ne
&_n “im = 0 sy, I, 0 1 uMJ, y, Y,
o d
= .q (10,3, 0% - |4®0,y,0)*) dy,
0

r
= (aP - ic 1@, y, ) dy.

Thus, we obtain an energy estimate for |a| < 1.
We want to discuss whether we can also estimate the solution for other values
of a using the Laplace transform. The eigenvalue problem (10.5.3) has the form



438 THE LAPLACE TRANSFORM METHOD

—iw 5

o) = ap@©), ol < o

-8
ﬁkﬂﬁ E%ﬁﬂugﬁu

For Res > 0, M has exactly one eigenvalue

kK = —Vs§?4w?, Rex < 0,

with negative real part. The corresponding eigenvector is given by

w'e = (5 + V2 + w2, in).
Therefore,

w(x) = oee.

Thus, the problem is not well posed if the relation

s+ V24 w? = jagw, Res > 0, w real, {10.5.26)

has a solution. A simple calculation shows that Eq. (10.5.26) has a solution if,
and only if, |a| > 1, Im a # 0. In that case, the problem is not well posed. We
have already shown that the problem is well posed if |z| < 1. Thus, we need
only discuss the case [a| > 1, where a is real. The problem (10.5.12) has the
form

o[- ]l . [aw
I PR Pl
#0,w,5) = al®0,w,5) + §w,s), la(-,w, 9l < e, (10.5.27)

where we have kept the original variables s, w instead of the scaled ones 5", «”.
The general solution of the differential equation, belonging to Ly, is given by

U = .
I

> q—u + <qm+ew_ oV ok

¢ is determined by the boundary condition
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o(s + V§2+w? - jaw) = §;

that is,

&= g ﬁm + .(.um.m.Emﬁ oV F vt
54+ V52 + w?— iaw o

We now show that [2(0, w, 5)|/|2(w, 5)| is unbounded. Thus, the Kreiss condi-
tion is not satisfied. Choose the sign. of w so that wa = |wa| and determine
mﬂ > 1 from

M_ + MWIH = _nh . :
Let s = i|w|&; + 9, 5 << |wl. Then

lim (|#90, @, $|/|8(w,s))

o] — e

m |iw/(s + V5% +w? ~ iaw)]

o] oo

lim Jew/|ilw]E

P

w0+ ol /1= + 2im/lo] + (/0P - iaol]]
lim _Jo/|ilol + 7

|eo| = oo
+ ilw| A/E -1 + iEm/(old - £))
+ O(n/w)?) — ilaw]||
lim _8\_..: + i&1y/ HIMW + %A,..NN\EV__ = oo,

f] 2o

1}

il

Thus, we cannot obtain the estimate (10.5.18b), and the problem is not strongly
well posed. One can show that it is also not well posed in the generalized
sense.

In the example above, energy estimates and Laplace transform techniques
yield the same restriction for the boundary conditions. Generally, however,
Laplace transform techniques give a much wider class of admissible bound-
ary conditions.



