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Abstract

The unstructured node centered finite volume method is analyzed and it is shown that it can be interpreted in
the framework of summation by parts operators. It is also shown that introducing boundary conditions weakly
produces strictly stable formulations. Numerical experiments corroborate the analysis.
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1. Introduction

In computational fluid dynamics as well as computational electromagnetics, finite volume methods
(FVM) formulated on unstructured grids are widely used to handle complex geometries, see, for example
[31,21,8,19,18,20,14,13,28,16,15,9,7]. In [22] it was shown that strictly stable finite volume methods on
structured grids can be constructed from so-called summation by parts (SBP) operators by imposing the
boundary conditions weakly.

Strict stability, which means that the growth rate of the semi-discrete solution is less than or equal to
the growth rate of the analytic solution, is important for long time calculations because it prevents error
growth in time for realistic meshes, see [17,5,24,25,3,2,10,1,27,26,12,29,30].

The analysis in [22] relied heavily on explicit matrix manipulations enabled by the structured
grid. In this work, the SBP-character of the scheme is derived directly by using Green’'s formula.
A weak procedure to introduce boundary conditions is shown to produce energy estimates that lead
to strict stability. This method is equivalent to the standard penalty procedure, called SAT (simultaneous
approximation term) [6], often used for high order finite difference operators of SBP-character.
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2. Analysis

The problem considered in this paper is of the form:
u; + Au, + Bu, =0, (x,y)E.QCRZ, D

with suitable boundary and initial conditions. In (1),is the vector of unknowns and and B are
constant, symmetric, square matrices. The energy method (see for example [11]) applied to (1) gives

d%nuné =— ?§ u'Ady + yg u'Budx = — yg u' (A% + BS)u -Ads, 2)

982 52 82
with the use of Green’s formula and the symmetry4fand B. In (2), |lu[|?> = [[u?dxdy, i is the
outward pointing unit normal t62, x andy are the unit vectors in the- andy-directions and dis the
infinitesimal arc length element counted counter clockwise ar@gand
The number of boundary conditions at any point on the boundary is the least number that make

(Ax 4+ BY) - n positive semi definite. When referring to the problem (1), it is assumed that the boundary
conditions are such that this is true. In the examples in Section 3 this will be explicitly shown to hold.

2.1. SBP operators

The problem (1) is discretized in space by introducing the veetof length N = In wherel is the
number of unknowns in (1) and is the number of grid-points. The elementsuofre organized such
that the firstz elements are the discretization of the first variable,ithe elements + 1, ..., 2n are the
discretization of the second variable and so on. Furthermore we introduce discrete opeyaocD, .
Eg. (1) can now formally be written

u; +(A® Dyu+ (B® Dy)u=0, 3)
where® is the Kronecker product.

For 2D-equations on unstructured grids, a generalized SBP-concept will be used. We @ipraioad
0, to be such that

(0. + O~ fotdr  #7(0,+ 0o~ - ot (4)
082 082

where the difference operators are of the fobm= P~1Q,, D, = P‘le and ¢ (x, y) is a smooth

continuous function. If (4) holds, the discrete energy method applied to (3) will lead to an approximation

that corresponds to Eq. (2).

2.1.1. The node-centered finite volume method

In a node centered FVM on an unstructured grid, the unknowns are associated with the nodes in the
grid. The control-volumes that constitute the dual grid are defined as follows. Each control-volume is a
polygon with its vertices at the centers of gravity of the surrounding triangles (or quadrilaterals) and at
the midpoints of the grid-sides, see Fig. 1.

Integration ofu, + u, = 0 over a control volume2., leads to

f/utdxdy+f/uxdxdy=ffutdxdy+%udy:O. (5)
2c 2c 2c

082¢
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Fig. 1. Part of the grid (solid line) and the dual grid (dashed line).

A semi discrete approximation of Eq. (5) can be written
Pu,+ Q,u=0, (6)

whereP is a diagonal matrix with the control volumes on the diagonal @péssociates with each node
an approximation of the line integral afaround the boundary of the control volume. The approximation
of this line integral, the flux, is computed as follows.

Consider a node in the interior of the mesh with indexThe flux is the integral

flux = % udy,

af2¢c
where £2¢ is the dual grid cell that belongs to the no@le The nodeC has neighbors with indices’,
see Fig. 1. Each neighbor can be associated in a one-to-one manner with the two sides of the polygon
082¢ that have a common vertex at the side connecting the neighbor to theChdgkch neighbor will
contribute to the flux with one term. This term is the mean valua®fand uy, times Ay over the
corresponding dual grid side. This can formally be written:

flax = 30 Ay = 3 e B 3 B )

i i

where the sum goes over all neighbors to the p6inNot considering the boundary of the domain, (7)
leads to

Ayi Ayi
QCCZZTZO, Qcn, = ——=—0nc; (8)

1

i.e., the matrixQ is skew symmetric in the interior.
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Ay

Fig. 2. The geometry at the boundary.

Let us consider the case where no boundary condition (b.c) is necessary. The flux through the boundary
edge is calculated as the node value at the boundary ngdémes the correspondingy;, see Fig. 2.
Formally:

ug +uy; Ay; Uy,
flux = ZTAM +upAyg =upAyg +Zu3 2 +Z 7Ayi.

i

Note that sums are not over a closed loop. From Fig. 2 we obtain

Z Ay; = —Ayp. 9

Thus we have

Ay; A
flux = ZMM% +u3%,

which leads to

Ayp Ay;

QBB=—’ QBN,' =5

2 2 =_QN,'B' (10)

Remark. The specific flux approximation (7) discussed in this section leads to a skew symmaetric
the interior. Other types of flux approximations (involving more nodes) are of course possible. However,
unless the resulting matrix is skew symmetric, instabilities might occur.

Let us now consider the case with huc= ¢ at the boundary. Even though we know thealues at
the boundary a priori from the b.c we dot remove those points from the scheme. Instead we impose
the b.c weakly. The fluxes, using (9), become:
up + uy, Ay; Ayp
flux = Z TAyi + gpAyp = ZuNi? +MBT + b,

i
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where
b { (g —up)Ayp atthe bpundary with b.c, (11)
0 otherwise.
The results (8), (10) and (11) yield
Pu,+ Qu—+b=0. (12)

Remark. There is a standard penalty procedure to introduce b.c in a stable way when working with SBP-
operators called SAT, see for example [6]. In the present case, when the masridiagonal, the SAT
procedure is equivalent to the weak procedure described above.

2.1.2. Generalization to the full problem
The generalization of (12) is straightforward. In (3) we @se= P~*Q, andD, = P~*Q, whereP,
0, andQ, are derived as in the previous section. The generalization of (12) becomes

(I®Pu+(A® Q)u+ (B Qy)u+b=0, (13)

whereb is a vector of the same length asi.e., of lengthN = nl wherel is the number of unknowns
andn is the number of grid pointsu(is organized as in Section 2.1.) The energy method applied to (13)
with b = 0 gives

d
d—tnun%@P =—u"(A®(Q«+ Q0)))u—u'(B®(Q,+ 0)))u’, (14)

where the symmetry of and B has been used.is thed x d identity matrix. Note that the energy rate
depends only on the symmetric part@f andQ,.
The result of Section 2.1.1 can be summarized as

0. +01=Y, 0,+0]=X, (15)

where the non-zero elementsinX areAy;, —Ax;, respectively. The: non-zero elements correspond
to them boundary points. The relation (15) yield

¢TY¢=Z¢?A%” ¢TX¢:_Z¢1'2AXI" (16)
=1 i=1
which means that (4) holds. The introduction of (15) into (14) leads to
d o A A
= 1A+ 53 7] 8, )
982

whered; = (Ay;, —Ax;)T/As;, As; = \/ Ax? + Ay?. We have also introduced the notatipn; = u; =

(ug, uz, ...,up);] andd ,, = >, . Note that the discrete estimate (17) naturally correspond to (2).

The introduction of boundary data must lead to an energy estimate. With boundary conditions in the
form u = ¢ we use the boundary data to calculate the flux as described above in Section 2.1.1. If a
combination of boundary data and local values are used to calculate the flux we substitute boundary data
for the ingoing characteristic variables and use local data for the outgoing ones. This method is illustrated
in the examples below.
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2.2. Observations

The FVM discussed here can be shown to be equivalent to a finite element method (FEM) in the
interior of the grid if the grid consist of triangles only. The FEM is a modification of the classical variant
obtained by using piece-wise linear ‘tent-functions’. The FEM can be written in the form (6) where

0
Pijz/d)id)jdxcjy, Qu=/¢ia¢jdxdy. (18)
2 Q

Hereg; is the piece-wise linear function that is 1 in nadand 0 in all other nodes. Th@-matrix above
can be shown to be identical to tiiematrix from the FVM if only triangles are used. To make also the
P-matrix identical, the FEM has to be lumped, i.e., thén (18) must be changed tBl.’j =36ij >« Pi
(where;; is the Kroneckes-symbol).

2.3. Srict stability

Following the outline in [22] we will introduce a definition of strict stability that corresponds well
with our examples below. Consider the problem (1) augmented with boundary conditions of the form

Lu=g, (x,y)eds2. (29)

In (19), L is ad x I matrix whered is the number of boundary conditions arthe number of unknowns.
The energy rate (2) can be rewritten as

d
—lu|®= —f [T AT +g" A g]ds, (20)
082
by specifying thel ingoing characteristic variables at the boundasy. To arrive at (20) we have used
the notations
(A% + BY) -i=XAX", v=X"u, A=diagir;) = AT+ A", (21)

wheren = (dy, —dx)"/ds, ds = /dx2 4+ dy? andv are the characteristic variables. The diagonal matrix
A with d purely negative entries is divided ini" (with zeros injected on the positions for theurely
negative entries) and~ (with zeros injected on the positions for the- d non-negative entries). The
boundary operatok in (19) consist of thel rows in X that correspond to thé negative eigenvalues.

The discrete approximation of (1) augmented with boundary conditions in penalty form is given by
(13). The discrete energy rate is given by (17) augmented with the tefin Zransformation of the
energy rate using the discrete version of (21) yields

d
g”"”?w S— Z[vT/ﬁv +0 ATV + 20T (v — )] Asy, (22)
082
where the matrix¥; remains to be determined. The choiEg= —§A; /2,5 > 0 leads to
d _
g Ielier=— %[vTAw +g A"g) A5 + R, (23)
whereR =Y, ,[(§ — o' A v+ gT A~ g — v A~ gl; As;. We need the following definition.
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Definition 1. Consider the estimates (20) and (23). The discrete approximation (13) of the problem (1),
(19) is strictly stable ifR is non-positive.

Remark. With g # 0, a strictly stable method is obtained with= 2 which yieldsR =}, [(v —

2) A~ (v — g)];As; < 0. With g = 0, strict stability is obtained with > 1. Definition 1 fits the constant
coefficient problems well. However, there are other definitions of strict stability (see, for example, [11])
more suitable for general types of problems.

Remark. The penalty term in (13) for the boundary condition (19) becomes in this case

bi=X:Zi(X]ui —g), (x,y); €3.

3. Examples
3.1. Aone-dimensional linear system

The domain of computation will b€ c R2. The boundary of2 will be denotedds2. DefineI; and
I; to be such that'y U I; = 982 and I'y is the part ofd2 wherex - 7 < 0 wheren is the outward
pointing unit normal ta $2. This of course implies that- 2 > 0 on I'>. Moreover if d = (dx, dy) is the
infinitesimal tangent vector t&$2 counted counter clockwise aroutizl we have that g < 0 on I'; and

dy > 0onrl>.
Consider the 1D Maxwell equations
E 0 1\(E\ _ 2 _
(H)t—i_(l 0)<H)x—0, (x,y)EQCR,E|39_O (24)

The problem (24) could also be considered to be a model problem for the Euler equations. It is a very
sensitive problem since

d
2 52
i.e., there is absolutely no dissipation present.

Let E and H denote the discrete representations of the unknadwasd H. The discrete approxima-
tion of (24) becomes,

(5 2)(§)+(g g)(fz)“’zo’ (25)

where
b=—(01,02)" ® EAy, [EAy]; = E; Ay, (26)

at all boundary points. The discrete energy rate becomes

d
G UEIS +IHIE) = =2 [EHi(1—02) +01Ef] Ay
%
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This means that the discrete energy rate corresponds exactly to the continuous cdse; Qefor
01 =0, o, =1 and the approximation is strictly stable, see Definition 1.
Let us consider the characteristic b.c

The energy equation (2) can, after some algebra, be written
d 1 1
g IEN+ 1H1%) = —Effz —(E - H)’dy — Eyg(E + H)? = g2dy, (28)
I I

where the definitions of ; and I, show that we have an energy estimate. With the new boundary
conditions (27) we need to determihén (25).
We make the ansatz

by = (2) ® ((E+ H) - f)Ay.
(29)
04 ’
where subscripts,P on b refer to Iy, I, respectively. In (29), the same notation as in (26) has been

used.
The energy method applied to (25) wittdefined in (29) leads to

d
E(”E”P'i‘”H”P)

1 1
~— 75 %: [(f7 = (E: — H)?)]Ay; — > %: [((E; + H)? — g7)]Ay; + R, (30)
where
1 1
R=3 S — B+ HD)| Ay — 5 S [(CE: — H) - &) Ay,
I I

The estimate (30) is obtained usiag= 0, =04, = —1/2 andoz; = 1/2.

The estimate (30) is completely similar to the continuous energy estimate (28). The definitions of
and I; show that (30) leads to an energy estimate and Rh&t0. The approximation (25), (29) of (24)
and (27) is strictly stable in the sense of Definition 1.

The diagonal form of (24) reads
<M> +<(1) _01> (“) =0, (x,y)€R2CR? (u—v)|ye =0, (31)

t X

V v
whereu = (E + H)/v/2,v = (—E + H)/+/2. The energy rate becomes
d
a//uz—i—vzdxdy:—%uz—vzdyzo.
2 082
The discrete approximation of (31) is

(6 2)(2)+(8 %) (2)wr=e .
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The ansatz
=(01,02)' ® (v — WAy, (33)
and the energy method applied to (32) leads to
d 2 2) = 242 A 34
d—t(||IL||p +Ivllp) =— Z[(M[ — )%+ 2(v; — i) (o + o2v) | Ay (34)
%
By letting
o1=1 o0,=0 only and 01=0, o,=1 onl (35)

we prescribe the ingoing characteristic variable and the estimate becomes,

(||;L||P+||v|| R=Y" (i —v)®Ayi = Y (i — vi)*Ay;.
I I
Strict stability is obtained in the sense of Definition 1 sikcel 0.
One could also update all boundary points in the same way using

o1=1/2, o,=1/2 onss. (36)

This would lead to

d
5 (el +013) = 0. 37)

The discrete energy rate now correspond exactly to the continuouskRegd) and consequently strict
stability is obtained.

There are other methods to introduce b.c than the weak method described above. One can, for example
remove the boundary points from the scheme altogether and satisfy the b.c exactly. This boundary
procedure (called injection or strong imposition) reduces the size of the system (12), but sometimes
introduces stability problems, see [22,5].

In the method of injection, tha-points onI; and thev-points onl% are removed from the system
andv is injected on/; andu on I, This gives

d
E(nu’u%/ +1Iv113,)

/! /! ! O ' / /!
=—(n" vT)<% _Q,><l:,>+2(u,T v )b
==Y WAy + Y VEAY — > v Ayi+ Y vips Ay, (38)
I I T2 I

where I, and I, are the sets of points that are neighbors to the pointS iand I, respectively, and

i’ is the index of the node on the boundary that is a neighbor to the node with in@esuch a node
exists).u’, v/, P’ and Q’ are the vectors and matrices where the points mentioned above are removed.
The energy rate contams indefinite cross-terms which means that we cannot show strict stability in the
sense of Definition 1.
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3.1.1. The spectrum and the long time behavior

It can be shown that the spectrum of the continuous problem (31) consists of the paints, 0
+2ri,.... The long time behavior of a numerical method is determined by the eigenvalues (the spectrum)
of the spatial operator (including the boundary procedure). A strictly stable scheme (see Definition 1) is
guaranteed to have a time growth that is less then the time growth for the continuous problem. This is an
especially important aspect on the irregular coarse grids one encounter in real life calculations.

We will consider the spectrum of the methods discussed above on a fine grid with 169 nodes with
almost equally sized volumes (see Fig. 10) and on a coarse irregular grid with 23 nodes (see Fig. 6). The
spectrum of the spatial operators using injection, the boundary procedure (33), (35) and (36) on the fine
mesh are shown in Figs. 3, 4 and 5, respectively. For all these methods, the spectrum lies in the right half
plane which implies non-growing solutions. Note that the spectrum using (36) is purely imaginary which
is consistent with (37).

On the coarse irregular mesh, the spectrum for the spatial operators using injection, the boundary
procedure (33), (35) and (36) are shown in Figs. 7, 8 and 9 respectively. The injection method produce
eigenvalues with negative real parts. These eigenvalues will lead to exponential time growth and
consequently an unstable scheme. The spectrum for the strictly stable methods using penalty of the form
(35) and (36) are still located in the right half of the complex plane.

3.1.2. Accuracy

The discrete spectra should converge to the continuous spectrdmr {0+2r i, . ..) when the number
of nodes in the mesh increases. To investigate this, the unit square was discretized as in Fig. 10 and the
smallest distance to the points and 2ri was plotted against the number of nodes, see Figs. 11-14.

* * %
o koK ok Tk koMol : MK Fek K
* * *
5+ o
10+ ,
15 1 1 1 I I 1 1 1
-2 0 2 4 6 8 10 12 14 16

Fig. 3. The spectrum for injection on a mesh with 169 nodes(Ref.;)) = 0.
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Fig. 4. The spectrum of the method defined by (35) on a mesh with 169 nodé®Retiip)) = 0.
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Fig. 5. The spectrum of the method defined by (36) on a mesh with 169 node®Retiip)) = 0.
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Fig. 6. A highly irregular mesh with 23 nodes.
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Fig. 7. The spectrum for injection on a mesh with 23 nodes(Reth;)) = —0.105.
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Fig. 8. The spectrum of the method defined by (35) on a mesh with 23 nodeRetiip)) = 0.
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Fig. 9. The spectrum for the method defined by (36), on a mesh with 23 nodeRaetiip)) = 0.
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Fig. 10. A mesh with almost equally sized volumes.

Convergence against i, x-refinment

max(abs(eig(D)—pi*i))
>

Number of Nodes

Fig. 11. Convergence against the poirit New nodes are introduced in thedirection only. The dashed line is a reference line
with slope-2.
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Convergence against 2ni, x-refinment

max(abs(eig(D)-2*pi*i))
=

Number of Nodes

Fig. 12. Convergence against the point:2New nodes are introduced in thedirection only. The dashed line is a reference
line with slope-2.

Convergence against i, y-refinment

max(abs(eig(D)—-pi*i))

-2

10 10
Number of nodes

Fig. 13. Convergence against the poiit New nodes are introduced in tlyedirection only.
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Convergence against 2xi, y-refinment

max(abs(eig(D)-2*pi*i))

Number of nodes

Fig. 14. Convergence against the point2New nodes are introduced in thedirection only.

Fig. 15. Mesh for the backward facing step calculation.

(The point 0 was omitted because it is contained in all spectra.) Two cases were tested; the convergence
when the new nodes were introduced in thdirection only, and the convergence when new nodes were
introduced in they-direction only.

Figs. 11-14 show that we have a second order accurate scheme. The refinemeydinghton does
not lead to more accurate solutions since the problem (24) contaitesivatives only. (In Figs. 11 and
12 two points deviate a lot from the others. The reason for that deviation is degenerated meshes obtainec
from Matlab.)

3.2. Atwo-dimensional nonlinear system

In this section we will study the two-dimensional Euler equations and in particular the difference
between the weak (penalty) and the strong (injection) form of imposing boundary conditions. We will
perform a linear constant coefficient analysis and compare with nonlinear calculations. In the two
computational cases below, the boundary is either a solid wall (denot®&@ {yor an artificial boundary
(denoteds £2,), see Figs. 15 and 18.
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Consider (1) with characteristic boundary condition$ @, and the solid wall boundary condition
u-n=0ats2s. The energy rate before imposing the solid wall boundary condition becomes (see (20))

d
Ellull2 =— / [UT/ﬁv + gTA*g] ds — / [vTAv] ds. (39)
0824 082s
To evaluate the second term in (39) we must be more specific and introduce the matrix
, NG Be/ ¥ 0
ac/ vy W 0 acy/(y =Dy
aA+ BB = _ _ -
Be/Jy 0 W e (y —D/y

where(a, 8)T =i is the outward pointing unit normal,= (—8, «)" the unit tangent vector and, B
are the constant symmetric matrices in the symmetrized Euler equations derived in [4], see also [23].
The dependent variables and parameters=i -7, w, =i -f, ¢, p, p andy are the component of the
velocity normal and tangential to the boundary, the speed of sound, the pressure, the density and the ratic
of specific heats, respectively. The over-bar is used to denote a variable at the constant reference state.
The symmetric matrixxA + 8B can be diagonalised 8AX " where
w,—¢ 0 0 0
0 w, O 0

A == — )
0 0 w, 0
0 0 0O w,+c
_ (40)
P — pcwy
0 _ =2
KTy p— (p — pco) ,
Wy
p+ pcw,

andfd = /2/(y —1). v in (40) are the characteristic variables. The boundary condiiica w = 0
implies that the contribution to the energy rate (39) from the solid w&lf becomes identically zero
since

VT Av = [, = 0] = —¢(vf — vf) = [w, =01 =0, (41)

on 482 by repeated use of (40).

Next, the discrete approximation (13) of (1) with characteristic boundary conditioh® atnd the
solid wall boundary conditiont - n = 0 at§£2g is considered. The energy rate (see (23)) with a penalty
formulation of the discrete solid wall boundary conditign;(— v4); = 0) included becomes

%nuu%@,, =-Y [V AT v+ gTA gl Asi + R =) [v'(Av+2b)],As;, (42)
8824 8825

whereb; = (v1 — v4); (01, 02, 03, o4)l.T. R < 0 is of the form given in the first remark in Section 2.3.
Exactly as in the continuous case, the contribution to the energy rate (42) from the solidsvall
becomes identically zero since

(v (Av 4 2b)) = [W, = 0] = ¢(vs — v1) ((va + V1)C + 20101 + 204v4) =0, (43)
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Fig. 16. Velocity distribution in the backward facing step calculation.
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Fig. 17. Convergence history for the backward facing step calculation.

foralli € 825y ando, = 04 = —¢/2. The values 0b,, o3 are arbitrary.

The estimates (39) and (42) together with the observations (41) and (43) means that the discrete
approximation (13) of (1) with characteristic boundary condition8s2i and the solid wall boundary
condition - n = 0 até§£2g is strictly stable in the sense of Definition 1.

To evaluate the relevance of the linear analysis above for nonlinear problems, two computational cases
was considered. In the first case, a structured mesh was used to compute the flow over a backward facing
step at Mach number 0.2, see Figs. 15, 16. The convergence history for a weak and strong imposition
of boundary conditions are shown in Fig. 17. Clearly the strictly stable weak imposition of boundary
conditions is superior. The calculation where strong imposition (injection is used) does not converge.

In the second calculation, an unstructured mesh (see Fig. 18) was used to compute the flow over a
Naca0012 air-foil at Mach number 0.5. Also in this case, the strictly stable weak imposition of boundary
conditions converges while the strong imposition prevents convergence, see Fig. 19. The non-existent
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Fig. 19. Convergence history for the Naca0012 calculation.
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convergence for the cases where injection was used could possibly be the result of incorrect location of
the eigenvalues from the spatial operator, see Section 3.1.1.

4. Conclusions

It has been shown that it is possible to generalize the concept of SBP-operators to node centered finite
volume methods on unstructured grids.

To introduce boundary conditions weakly is shown to be equivalent to the standard penalty procedure
(SAT) for boundary conditions used together with SBP-operators.

The method analyzed in this work with boundary conditions imposed weakly lead to energy estimates
and strict stability if one specifies the ingoing characteristic variable and/or imposes no slip boundary
conditions.

Furthermore, the method of injection of boundary conditions does not always lead to energy estimates
and sometimes results in an unstable scheme or in calculations that do not converge to steady state.
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