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a b s t r a c t

We show how a stable and accurate hybrid procedure for fluid flow can be constructed. Two separate
solvers, one using high order finite difference methods and another using the node-centered unstruc-
tured finite volume method are coupled in a truly stable way. The two flow solvers run independently
and receive and send information from each other by using a third coupling code. Exact solutions to
the Euler equations are used to verify the accuracy and stability of the new computational procedure.
We also demonstrate the capability of the new procedure in a calculation of the flow in and around a
model of a coral.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The generation and transportation of vortexes from wing-tips,
rotors and wind turbines, and the generation and propagation of
sound from aircraft, cars and submarines require methods that
can handle locally highly nonlinear phenomena in complex geom-
etries as well as efficient and accurate signal transportation in do-
mains with smooth flow and geometries. This technique can also
be used in adapting an essentially structured mesh to a curved
shock.

The combination of finite volume methods on unstructured
grids (for the part with nonlinear phenomena and complex geom-
etries) and high-order finite difference methods on structured
grids (for the wave propagation part) meet these demands. In
many cases separate stand-alone codes using these methods also
exist. In this paper we will show how to combine the finite volume
and finite difference method and the related codes into a practical
procedure.

1.1. Background, main ideas and previous results

There are essentially two different types of hybrid methods. The
most common one employs different governing equations in differ-

ent parts of the computational domain. A typical example is noise
generated in an isolated part of the flow, considered as the sound
source. The nonlinear phenomenon in the complex geometry is of-
ten computed by the Euler or Navier–Stokes equations. The sound
propagation to the far field is considered governed by the linear
wave equation with source terms from the Euler or Navier–Stokes
calculation. This type of hybrid method is discussed in [1,2].

In this paper we consider another type of hybrid method that
use the same governing equations (in this case the compressible
Euler equations) in the whole computational domain, not just close
to the source. The word hybrid refers to the use of different numer-
ical methods in different parts of the computational domain.
Examples of this type of hybrid method can be found in [3,4]. In
this type of coupling procedure (provided that accurate data are
known) a stable and accurate numerical procedure does suffice
for convergence to the true solution.

Many of the flow phenomena that we are interested in last for
long times and information propagate over long distances. Strict
stability which prevents error growth on realistic mesh sizes, is
very important for calculations over long times. We have derived
and studied strictly stable unstructured finite volume methods
(see [5–7]) and high-order finite difference methods (see [8–
13]) for both hyperbolic, parabolic and incompletely parabolic
problems. These methods employ so-called summation-by-parts
operators and impose the boundary conditions weakly (see
[5,14]).

In [15] it was proved that a specific interface procedure
connecting finite difference methods and finite volume methods
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is stable for hyperbolic systems of equations. This study will rely
heavily on these results and we will apply the theoretical results
to the Euler equations. We will demonstrate that the theoretical re-
sults in [15] in combination with two existing efficient codes and a
third coupling code will lead to an efficient and practical computa-
tional tool.

A three-dimensional code (CDP) that uses the node-centered fi-
nite volume method mentioned above has been developed in the
Center for Turbulence Research (CTR) at Stanford University, see
[16]. Another three-dimensional multi-block code (NSSUS) that
uses the finite difference technique discussed above is available
at the Department of Aeronautics & Astronautics at Stanford Uni-
versity, see [17]. These codes compute approximations to the Euler
or Navier–Stokes equations and are the initial building blocks for
the new hybrid method. A third coupling code (Chimps-lite, a sim-
plified version of Chimps [18]) will administer the coupling proce-
dure and make it possible for the two solvers to communicate in an
efficient and scalable way.

The rest of this paper will proceed as follows. For complete-
ness, we shortly review the results in [15] in Section 2. In Sec-
tion 3 we describe the two sets of computational solvers and
the specific coupling code. In Section 4 we validate the computa-
tional procedure against exact solutions and show the ability
to cope with complex geometries and high accuracy require-
ments. Finally, we draw conclusions and discuss future work in
Section 5.

2. Analysis

To introduce our technique (see [15]) we consider the hyper-
bolic system

ut þ Aux þ Buy ¼ 0; �1 6 x 6 1; 0 6 y 6 1 ð1Þ

with suitable initial and boundary conditions. A and B are constant
symmetric matrices with k rows and columns. We consider a sim-
plified computational domain that is divided into two sub-domains.
A so-called node-centered unstructured finite volume method will
be used to discretize (1) on sub-domain ½�1;0� � ½0;1� with an
unstructured mesh, while a high-order finite difference method will
be used on sub-domain ½0;1� � ½0;1� with a structured mesh, see
Fig. 1. The fact that the unknowns in the finite volume and the finite
difference methods are located in the nodes and can be co-located
at the interface is a key ingredient in the coupling procedure we will
present below.

2.1. The node-centered finite volume method

The so-called node-centered finite volume method is used in
this paper (see [19–23] for more details). In [5,15] it was shown
that the semi-discrete finite volume form of (1) on sub-domain
½�1;0� � ½0;1� can be written,

ut þ DL
x � A

n o
uþ DL

y � B
n o

u ¼ SATL
I ðuI � vIÞ þ SATL

O: ð2Þ

The difference operators and the penalty term that imposes the
interface conditions have the form (see [15])

DL
x ¼ ðP

LÞ�1Q L
x; DL

y ¼ ðP
LÞ�1Q L

y; SATL
I ¼ ðPLÞ�1ðEL

I Þ
T YI

h i
� RL:

SATL
O imposes the outer boundary conditions weakly. uI and vI

are vectors which represent u and v (v is the discrete finite differ-
ence solution that will be presented below) on the interface,
respectively. EL

I is a projection matrix which maps u to uI such that
uI ¼ ðEL

I � IkÞu. The non-zero components of EL
I have the value 1

and appear at the interface. Ik is the k� k identity matrix. YI � RL

is a penalty matrix that will be determined below by stability
requirements.

PL is a positive diagonal m�m matrix with the control volumes
Xi on the diagonal. QL

x and QL
y are almost skew symmetric m�m

matrices and satisfy

QL
x þ ðQ

L
xÞ

T ¼ Y; Q L
y þ ðQ

L
yÞ

T ¼ X; ð3Þ

where the non-zero elements in Y and X are Dyi, �Dxi and corre-
spond to the boundary points. For the definition of Dxj and Dyj,
see Fig. 2. The part of the penalty term SATL

I denoted by YI is the
restriction of Y to the interface. For more details on the SBP proper-
ties of the finite volume scheme and how to implement the outer
boundary conditions weakly, see [5].

2.2. The high-order finite difference method

The high-order finite difference method used in this paper is
described in [8–13]. Consider the sub-domain ½0;1� � ½0;1� with a
structured mesh of n� l points. The finite difference approxima-
tion of u at the grid point ðxi; yjÞ is a k� 1 vector denoted vij. We
organize the solution in the global vector v ¼ ½v11; . . . ;v1l;v21; . . .,
v2l; . . . ;vn1; . . . ;vnl�T . vx and vy are approximations of ux and uy

and are approximated using the high-order accurate SBP operators
for the first derivative that were constructed in [24,25].

West 

North 

East 

South 

y=1 

x=1 x= 1 

U V 

Interface 

y=0 

Fig. 1. The hybrid mesh on the computational domain.
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The semi-discrete approximation of (1) on ½0;1� � ½0;1� can be
written,

ut þ DR
x � A

n o
uþ DR

y � B
n o

u ¼ SATR
I ðuI � vIÞ þ SATR

O: ð4Þ

The difference operators and the penalty term that imposes the
interface conditions have the form (see [15])

DR
x ¼ ðPR

x Þ
�1Q R

x

h i
� IR

y ; DR
y ¼ IR

x � ðP
R
yÞ
�1Q R

y

h i
;

SATR
I ¼ ðPR

x � PR
yÞ
�1ðER

I Þ
T

h i
PR

y � RR:

SATR
O imposes outer boundary conditions weakly. The identity

matrices IR
x and IR

y are n� n and l� l, respectively. ER
I is a projection

matrix which maps v to vI , that is, vI ¼ ðER
I � IkÞv. RR is a penalty

matrix that will be determined below by stability requirements.
Details on how to implement the outer boundary conditions
weakly for the finite difference method are given in [8].

Furthermore, ðPR
x Þ
�1Q R

x and ðPR
yÞ
�1Q R

y are SBP operators since
matrices PR

x and PR
y are symmetric and positive definite and

Q R
x þ Q R

x

� �T
¼ BR

x ; QR
y þ QR

y

� �T
¼ BR

y : ð5Þ

BR
x , BR

y are diagonal matrices with the structure ð�1;0; :0;1Þ and size
n� n and l� l, respectively.

Remark. The approach we use in this paper above is closely
related to the interior penalty technique used in finite element and
discontinuous Galerkin methods. The penalty terms in Eqs. (2) and
(4) are often denoted lifting operators in that context, see [26] for
more details.

2.3. Stable interface treatment

Define the norms NL ¼ PL � Ik and NR ¼ ðPR
x � PR

yÞ � Ik, where
NL ¼ ðNLÞT > 0 and NR ¼ ðNRÞT > 0. We apply the energy method
by multiplying (2) and (4) with uT NL and vT NR, respectively. We
also use (3) and (5) and assume that the terms including uB, vE,
vS, vN at the outer boundaries are precisely canceled by the SAT
terms (see [8,9]). This yields the energy estimate

d
dt
ðkuk2

NL þ kuk2
NR Þ ¼ ½uI;vI�T MI½uI;vI�; ð6Þ

MI ¼
�YI � Aþ YI � ðRL þ ðRLÞTÞ �YI � RL � PR

y � RR

�YI � RL � PR
y � RR PR

y � Aþ PR
y � ðR

R þ ðRRÞTÞ

" #
:

The penalty matrices RL and RR have the form XTRLX ¼
KL and XTRRX ¼ KR. X is the orthogonal matrix that diagonalizes
A, i.e. XT AX ¼ K. kL

i and kR
i are the ith diagonal components in

KL and KR, respectively.
In [15] it was shown that MI was negative semi-definite if

YI ¼ PR
y ¼ Py; RL ¼ ðRLÞT ; RR ¼ ðRRÞT ; ð7Þ

kR
i ¼ kL

i � ki; kL
i 6 ki=2; i ¼ 1; . . . ; k ð8Þ

holds. Negative semi-definiteness of MI leads directly to

Proposition 2.3.1. If the conditions (7) and (8) hold, (6) leads to a
bounded energy and (2 ) and (4) have a stable and conservative
interface treatment.

For more details on how to implement the interface conditions
weakly for the coupled hybrid method, see [15].

Remark. The conditions kR
i ¼ kL

i � ki in (8) in combination with (7)
lead to a conservative interface treatment. The conservation
conditions are obtained by multiplying (2) and (4) with
/T NL and /T NR, respectively. By using the continuity of the smooth
grid function / at the interface together with (3), (5) and (7) and
requiring that all terms vanish at the interface leads to kR

i ¼ kL
i � ki.

For more details, see [8–10,15].

The specific SBP operators based on diagonal norms are given in
[11,25]. When we use the second-order diagonal norm on the right
sub-domain, we do not need to change the control volume since
YI ¼ PR

y automatically. But the standard fourth- and sixth-order
diagonal norms are

h � diag
17
48

;
59
48

;
43
48

;
49
48

; 1; 1;1;1; . . . ;

� �

h �diag
13;649
43;200

;
12;013
8640

;
2711
4320

;
5359
4320

;
7877
8640

;
43;801
43;200

;1;1; . . . ;
� �

respectively. In both cases we need to modify the control volume
for the finite volume method at the points on the interface to guar-
antee YI ¼ PR

y . The old dual grid for the points at the interface con-
sists of the lines between the center of the triangles and the
midpoints of the edges. In order to match YI and PR

y , the new lines
will connect the center of the triangles and the points at the inter-
face which correspond to the PR

y , see Fig. 3.

Remark. The hybrid method described above can be extended in a
straightforward manner to three dimensions by interfacing hexa-

Fig. 2. The grid (solid lines) and the dual grid (dashed lines).
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hedra from the structured side with pyramids on the unstructured
side. Stability will be obtained by modifying the corresponding
two-dimensional finite volume norm (choose the dual grid prop-
erly) to match the two-dimensional finite difference norm.

3. Computational tools

The node-centered finite volume code (CDP) and the high order
finite difference code (NSSUS) are the initial building blocks for the
new hybrid method. Both CDP and NSSUSS are stand-alone codes
that computes approximations to the Euler or Navier–Stokes equa-

tions. The codes are node-based and use SBP operators and penalty
techniques for imposing the boundary and interface conditions
weakly. This numerical technique enables coupling of the two
codes by sending the value of the dependent variables in the nodes
located on the interface to the other code and at the same time
receiving the co-located data at the interface from the other code.
Each code provides boundary data to the other code.

A third coupling code (Chimps-lite) will administer the coupling
procedure and make it possible for the two solvers to communicate
in a correct way. Chimps-lite identifies co-located nodes in a pre-
processing step and during the execution it manages the exchange
of data between CDP and NSSUS, at each stage in the explicit time-
integration procedure [27]. See Fig. 4 for a schematic illustration.

Fig. 3. The modified control volumes for the points on the interface.

Fig. 4. Schematic interface communication.
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The development of Chimps-lite is an essential new ingredient that
will take the coupling idea from a theoretical concept to a practi-
cally useful tool for fluid flow investigations. It will be discussed
in some detail below.

3.1. Chimps-lite and parallel implementation consideration

In addition to the mathematical and numerical foundation pre-
sented previously, the development of a massively parallel (say
1000+ processor) hybrid simulation capability requires a fast, scal-
able model for the regular exchange of data between the various
solvers.

One option is to write a new hybrid solver that merges the
desired solver capabilities and includes an additional layer of
communication associated with the interfaces. While this option
will allow us to continue to run in the single-program-multiple-
data (SPMD) mode that has emerged as the dominant model for
large-scale parallel computation, it has the down-side of requir-
ing major modifications to both codes. In some cases the codes
will be written in different languages. There may be global
name-space conflicts that prevent us from simply writing a
common ‘‘main” that calls the appropriate solver as a ‘‘subrou-
tine”. The required re-coding will invariably introduce additional
bugs that must be corrected. When the stand-alone codes have
had 10s or even hundreds of man-years of development, verifica-
tion, and validation, this level of intervention is normally
unacceptable.

An alternative approach is to run both codes in a stand-alone
mode under one multiple-program-multiple-data (MPMD) session,
and use an additional library of routines to handle the interface
communication. This approach requires minimal modifications to
the codes, and is the one we follow in the present implementation
using a simplified version of the CHIMPS coupling library [18]
called CHIMPS-lite.

In this model, only two minor modifications are required to the
participating codes – one associated with the initialization of MPI
and the other with exchanging data prior to application of the
interface conditions. These modifications are described in the fol-
lowing subsections. Note that the MPI commands in the next sec-
tion are shell dependent.

3.2. Communicator splitting

Many MPI environments support running MPMD from the com-
mand line. For example, the command:

mpirun -np 10 code1: -np 25 code2

will run code1 on 10 processors, and code2 on 25 processors (i.e.
35 processors total), all having a common world communicator.
For systems that do not support this model, the same thing can
be accomplished through modifications to the job submission
script, or even by using a simple shell script that parses the proces-
sor number normally available as an environment variable. For
example:

mpirun -np 35 mpmd.sh

where mpmd.sh is the following:

#!/bin/bash

if [$ PROCID -le 9]

then./code1

else./code2

fi

In either case, both codes will start up with a common world
communicator that must be split before normal execution can con-
tinue. This splitting is the first modification required in the codes.
It can be done at the point where the routine MPI_Init() would
normally be called. Instead, both codes should call a common rou-
tine in the coupling library that takes a unique key or name from
each solver, calls MPI_Init(), and then splits the communicator
based on the key, returning a unique communicator to each solver.
All local MPI routines in the solvers should then use this split com-
municator for their local MPI calls, and not MPI_COMM_WORLD. This
call will of course be collective and blocking.

3.3. Data exchange

In the context of SBP/SAT codes, the application of interface
conditions is very similar to boundary conditions except that the
data used in forming the penalty terms comes from the point-
matched interface data associated with the other solver. The sec-
ond modification to the participating codes is thus an exchange
of interface data prior to forming the interface penalty terms. For
the present computations involving fixed grids and conformal
interfaces, the building of the communication pattern associated
with this exchange can be considered a preprocessing step because
it remains fixed throughout the simulation. Consequently the sca-
lability of the searches is not critical, however, we have used the
scalable search routines described in [18] to locate matching
points.

On the first call to the data exchange, both codes provide the list
of coordinates of their interface points to CHIMPS-lite, which then
proceeds to build the communication pattern associated with the
data exchange based on matching point coordinate locations be-
tween solvers (within a small tolerance). On subsequent calls,
the same communication pattern can be reused, making the cost
of each exchange very modest. Fig. 4 illustrates this process sche-
matically. By using the CHIMPS-lite routines to build the commu-
nication pattern and manage the data exchanges, it is never
necessary for the solvers to have any direct knowledge of each
other’s partitioning details.

4. Numerical calculations

The coupling procedure applied to the scalar advection equation
was extensively tested and validated in [15]. Here we will make
sure the theoretical results derived above for the symmetrized con-
stant coefficient system also apply to the fully non-linear Euler
equations.

Remark. The stability analysis above was done on a system with
constant symmetric matrices. Here we multiply the constant
coefficient version of the Euler equations with a symmetrizing
matrix from the left. We use the symmetrizer derived in [28]. Once
the penalty matrices are obtained, the whole system is trans-
formed back to non-symmetric form and implemented.

4.1. Validation

The coupling procedure applied to the scalar advection equation
was extensively tested and validated in [15]. Here we will make
sure these results also apply to a non-linear system of equations
(the Euler equations). We calculate the propagation of a vortex
with constant velocity (an exact solution to the Euler equations)
across an interface. A typical mesh for this calculation is shown
in Fig. 5. We use the explicit three-stage third-order time-stepping
scheme of Le and Moin [27]. The solution is advanced with a global
time-step based on the smallest grid size in both domains.

J. Nordström et al. / Computers & Fluids 38 (2009) 875–882 879



Author's personal copy

The accuracy of the coupled procedure for various orders of
accuracy of the NSSUS finite difference code is shown in Tables
1–5. The errors are computed when the vortex is centered at the
interface. The presence of second-order errors produced by CDP
will limit the overall convergence rate to 2 even if NSSUS runs with
higher accuracy. Similar results have been produced for various
combinations of directions and orders of accuracy in NSSUS and
they indicate that the procedure converges with the appropriate
rate.

As can be seen in the tables, the highest gain in accuracy is
obtained for the case where the vortex propagates from the high-
order accurate NSSUS region into the second-order accurate CDP
region. We illustrate that in Fig. 6 which shows the solution and
the error for the coupling between NSSUS (second and fourth or-
der) and CDP. The error levels in both calculations are very small
(of the order 10�4). The error levels for the second-order NSSUS

are visible long before the vortex hits the interface. For the
fourth-order case, nothing can be seen until the vortex reaches
the interface.

4.2. An application

The new hybrid method can handle nonlinear phenomena in
complex geometries as well as efficient and accurate signal trans-
portation in domains with smooth flow and geometries. We
demonstrate that capability in a calculation of the flow through
a two-dimensional model of a coral. In this calculation we use
the sixth-order accurate version of NSSUS. The geometry and
the corresponding mesh can be seen in Fig. 7. The center of the
coral is at ðx; yÞ ¼ ð0;0Þ. The interface is located at x ¼ 0:6. The cal-
culation proceeds as follows. First we compute a steady state
solution. Next, we take the steady state solution and add the vor-
tex centered at ðx; yÞ ¼ ð�1:5;0Þ. That is our initial solution, see
Fig. 8a.

As time passes, the vortex propagates through the coral (in the
unstructured finite volume region) and sits at t ¼ 2:6 just at the
interface leaving the coral, see Fig. 8b. The shape of the vortex is
modified by the coral. At t ¼ 3:6 the vortex has left the coral region
and is now propagating (with sixth-order accuracy) downstream,
see Fig. 9a. The vortex seems to return to it’s original form. Finally,
at t ¼ 4:4 the vortex is approaching the right boundary and it is
even closer to it’s original shape, see Fig. 9b.

Table 1
Error as vortex propagate from second-order NSSUS region intosecond-order CDP
region.

N log lðNSSUSÞ
2

� �
qðNSSUSÞ log lðCDPÞ

2

� �
qðCDPÞ

51 � 51 �2.88 – �3.22 –
101 � 101 �3.50 2.06 �3.77 1.83
201 � 201 �4.11 2.03 �4.36 1.96
401 � 401 �4.71 2.00 �4.96 1.99

Fig. 5. Mesh for the accuracy validation of the interface procedure.

Table 3
Error as vortex propagate from 6th-order NSSUS region into second-order CDP region.

N log lðNSSUSÞ
2

� �
qðNSSUSÞ log lðCDPÞ

2

� �
qðCDPÞ

51 � 51 �3.89 – �3.82 –
101 � 101 �4.92 3.41 �4.41 1.98
201 � 201 �5.68 2.53 �5.01 2.00
401 � 401 �6.31 2.11 �5.62 2.02

Table 2
Error as vortex propagate from fourth-order NSSUS into region second-order CDP
region.

N log lðNSSUSÞ
2

� �
qðNSSUSÞ log lðCDPÞ

2

� �
qðCDPÞ

51 � 51 �4.00 – �3.82 –
101 � 101 �4.89 2.96 �4.41 1.98
201 � 201 �5.63 2.47 �5.01 2.00
401 � 401 �6.30 2.21 �5.62 2.02

Table 4
Error as vortex propagate from second-order CDP region into second-order NSSUS
region.

N log lðCDPÞ
2

� �
qðCDPÞ log lðNSSUSÞ

2

� �
qðNSSUSÞ

51 � 51 �3.03 – �3.01 –
101 � 101 �3.65 2.05 �3.60 1.93
201 � 201 �4.25 2.00 �4.19 1.98

Table 5
Error as vortex propagate from second-order CDP region into fourth-order NSSUS
region.

N log lðCDPÞ
2

� �
qðCDPÞ log lðNSSUSÞ

2

� �
qðNSSUSÞ

51 � 51 �3.03 – �3.06 –
101 � 101 �3.65 2.05 �3.65 1.95
201 � 201 �4.25 2.00 �4.25 1.98
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Fig. 6. Vortex propagating over interface. The columns correspond to three different times. The first row show the density distribution. The second and third rows show the
density error for the second and fourth-order NSSUS coupled to CDP, respectively.

Fig. 7. Geometry and grid topology of hybrid calculation around coral.

Fig. 8. Time sequence for the vortex–coral interaction, t ¼ 0:0 and t ¼ 2:3.

J. Nordström et al. / Computers & Fluids 38 (2009) 875–882 881
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5. Conclusions and future work

We have developed a hybrid method constructed by the cou-
pling of two stand-alone existing CFD codes. The coupling is
administered by a third separate coupling code.

The hybrid method allows for individual development of the
stand-alone CFD codes. No development with consideration to
the other code is required since the CFD codes only communicate
with each other through the third coupling code.

We have demonstrated that the hybrid method is an accurate,
efficient and a practically useful computational tool that can han-
dle complex geometries as well as wave propagation phenomena.

The next step involves including the viscous terms. Initial work
in that direction is ongoing, see [29]. With an efficient hybrid
method for the Navier–Stokes equations, large scale flow problems
in complex geometries including wave propagation effects, can be
analyzed.
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Fig. 9. Time sequence for the vortex–coral interaction, t ¼ 3:6 and t ¼ 4:4.
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