
Journal of Computational Physics 228 (2009) 9020–9035
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A stable and conservative high order multi-block method
for the compressible Navier–Stokes equations q

Jan Nordström a,b,c,*, Jing Gong c, Edwin van der Weide d, Magnus Svärd e

a School of Mechanical, Industrial and Aeronautical Engineering, University of the Witvatersrand, PO WITS 2050, Johannesburg, South Africa
b Department of Aeronautics and Systems Integration, FOI, The Swedish Defense Research Agency, SE-164 90 Stockholm, Sweden
c Department of Information Technology, Scientific Computing, Uppsala University, SE-751 05 Uppsala, Sweden
d Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
e Center of Mathematics for Applications, University of Oslo, P.B. 1053, Blindern, N-0316 Oslo, Norway

a r t i c l e i n f o a b s t r a c t
Article history:
Received 20 December 2008
Received in revised form 25 August 2009
Accepted 3 September 2009
Available online 15 September 2009

Keywords:
Navier–Stokes
Finite difference
High order
Stability
Conservation
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.09.005

q This work was done while the first two authors
* Corresponding author. Address: School of Mec

Johannesburg, South Africa.
E-mail address: Jan.Nordstrom@foi.se (J. Nordstr
A stable and conservative high order multi-block method for the time-dependent com-
pressible Navier–Stokes equations has been developed. Stability and conservation are
proved using summation-by-parts operators, weak interface conditions and the energy
method. This development makes it possible to exploit the efficiency of the high order
finite difference method for non-trivial geometries. The computational results corroborate
the theoretical analysis.
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1. Introduction

The high order finite difference method in combination with summation-by-parts operators and weak boundary condi-
tions can very efficiently and reliably handle large problems on structured grids for reasonably smooth geometries. This has
been shown in a sequence of papers, see for example [12,24,3,15,16,18,26,28]. The most recent papers [26,28] on this subject
discuss the specific problem with far-field and no-slip boundaries. In this paper we will continue the development by treat-
ing the similar but not identical problem with a stable and accurate coupling of blocks.

In [4,23,29] the conventional (non-overlapping meshes) multi-block methodology is presented and discussed, but no
theoretical analysis is performed. The stability of the non-overlapping multi-block techniques is analyzed in [5,14,6] using
the one-dimensional normal mode analysis (see [10]). The overlapping grid technique has been studied in a similar manner
using normal mode analysis in [2,21,22]. The analysis in the papers above is essentially one-dimensional (although a periodic
behavior in the tangential direction can be included).

Due to the limitations of the normal mode analysis for multi-dimensional problems we will use the energy method in
combination with summation-by-parts operators and weak boundary conditions as our theoretical tools. The technology
in the two papers [26,28] together with the interface treatment in this paper will conclude the development of a high order
accurate and truly stable multi-block finite difference method for the Navier–Stokes equations.
. All rights reserved.
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In the next phase of this development we will use the coupling technique developed in this paper and combine the high
order finite difference method with the finite volume method in combination with unstructured grids which can more read-
ily handle complex geometries. That development is ongoing, see for example [17,7,19]. The development in this paper is the
theoretical foundation for that work.

The main challenge for multi-block methods is to control the possible instability at the block interfaces between
sub-domains. We will focus on that problem and for the first time prove stability and conservation of a high order accurate
multi-block finite difference method applied to the Navier–Stokes equations. The analysis will be done for the linear constant
coefficient Navier–Stokes equations. The theoretical development is validated in numerical computations where the full
non-linear Navier–Stokes equations are used.

The rest of the paper is organized as follows. In Section 2, we present the symmetric constant coefficient form of the
Navier–Stokes equations followed by a short discussion of well-posedness in Section 3. The formulation of the numerical
method on a single domain is considered in Section 4. The coupling procedure is the topic of Section 5 and the numerical
experiments are presented in Section 6. Finally, conclusions are drawn in Section 7.

2. The Navier–Stokes equations

The frozen coefficient time-dependent compressible Navier–Stokes equations in two-dimensions in non-conservative
form are given by, see [1]
~ut þ A~ux þ B~uy ¼ C~uxx þ D~uxy þ E~uxy; ð1Þ
where ~u ¼ ½~q; ~u1; ~u2; ~p�T and A; B; C; D, and E are coefficient matrices. ~q is the density, ~u1 and ~u2 are the velocities and ~p is the
pressure. The coefficients are frozen at the constant state u ¼ ½q;u1;u2; p�T . To apply the energy method we must symmetrize
(1). The procedure developed in [1,20] yield a symmetric form of (1),
ut þ ðA1uÞx þ ðA2uÞy ¼ e ðB11ux þ B12uyÞx þ ðB21ux þ B22uyÞy
h i

; ð2Þ
with e ¼ 1=Re; u ¼ c~q= ffiffifficp q
� �

; ~u1; ~u2;qeT= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðc� 1Þ

p� �T
and
A1 ¼

u1
cffiffi
c
p 0 0

cffiffi
c
p u1 0

ffiffiffiffiffiffi
c�1
c

q
c

0 0 u1 0

0
ffiffiffiffiffiffi
c�1
c

q
c 0 u1

26666664

37777775; A2 ¼

u2 0 cffiffi
c
p 0

0 u2 0 0
cffiffi
c
p 0 u2

ffiffiffiffiffiffi
c�1
c

q
c

0 0
ffiffiffiffiffiffi
c�1
c

q
c u2

26666664

37777775; B11 ¼

0 0 0 0
0 kþ2l

q 0 0

0 0 l
q 0

0 0 0 cl
Prq

266664
377775;

B12 ¼ B21 ¼

0 0 0 0
0 0 kþl

2q 0

0 kþl
2q 0 0

0 0 0 0

266664
377775; B22 ¼

0 0 0 0
0 l

q 0 0

0 0 kþ2l
q 0

0 0 0 cl
Prq

2666664

3777775:

In the vectors and matrices above we have used the temperature eT , the ratio of the specific heats c ¼ cp=cv , the speed of
sound c, the dynamic viscosity l, the bulk viscosity k, the kinematic viscosity m ¼ l=q, the Prandtl number Pr ¼ m=a (a is
the thermal diffusivity) and the Reynolds number Re ¼ q1U1L=l1. The infinity subscript denotes free stream conditions
and L is a characteristic length. Note again that the form of the matrices (Jacobians) above are obtained for the symmetrized
frozen coefficient version of the Navier–Stokes equations.

Eq. (2) can be rewritten in conservative form as
ut þ Fx þ Gy ¼ 0; ð3Þ
where
F ¼ A1u� eðB11ux þ B12uyÞ ¼ FI � eFV ;

G ¼ A2u� eðB21ux þ B22uyÞ ¼ GI � eGV :
ð4Þ
FI and GI contain the inviscid terms and FV and GV the viscous terms.

3. Well-posedness of the continuous problem

To keep the algebraic complexity of the analysis as low as possible, we consider rectangular domains with Cartesian coor-
dinates. Applying the energy method to (3) on the domain X 2 ½�1;1� � ½0;1� we obtain
ZZ

X
uT ut dxdyþ

ZZ
X

uT Fx dxdyþ
ZZ

X
uT Gy dxdy ¼ 0: ð5Þ
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By using the Green–Gauss theorem, Eq. (5) can be written as
d
dt
ðkuk2Þ ¼ �

Z 1

0
uTðFI � 2eFV Þjx¼1 dy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

East

�
Z 0

1
uTðFI � 2eFV Þjx¼�1 dy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

West

�
Z 1

�1
uTðGI � 2eGV Þjy¼0 dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

South

�
Z �1

1
uTðGI � 2eGV Þjy¼1 dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

North

� 2e
ZZ

X

ux

uy

� 	T B11 B12

B21 B22

� 	
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

B

ux

uy

� 	
dxdy: ð6Þ
To have a bounded energy growth, the boundary terms (East, West, North and South) must be bounded using the correct
number and form of boundary conditions. That is the topic in papers [26,28] and it is not discussed further here. The
contribution from the integral term is negative semi-definite since the matrix B ¼ ½B11 B12; B21 B22� is positive semi-definite.

We summarize the result for the continuous problem (2)–(4) in the following proposition.

Proposition 3.1. The continuous problem (2)–(4) is well posed if the boundary terms are limited by using the correct number of
the boundary conditions.
Remark. The n-dimensional Navier–Stokes equations require n boundary conditions at an inflow boundary and n� 1 at an
outflow boundary. In this case (two-dimensions) we need four boundary conditions an inflow boundary and three at an out-
flow boundary, see for example [25,10,20].
4. Stability on a single domain

Consider the computational domain with a Cartesian mesh of ðM þ 1Þ � ðN þ 1Þ points. Let the kth element of the contin-
uous variable u at the structured grid point ðxi; yjÞ be uði; j; kÞ ð0 6 k 6 3Þ. The finite difference approximation of uði; j; kÞ is
collected in a global vector v such that v ½4iðN þ 1þ 4jþ kÞ� ¼ uði; j; kÞ ð0 6 i 6 M;0 6 j 6 N and 0 6 k 6 3Þ. Let vx and vy

be approximations of ux and uy.
By using the finite difference method developed in [12,24,3,15,16,18,26,28] a semi-discrete approximation of Eq. (3) can

be written as
vt þ DxFþ DyG ¼ 0; ð7Þ
where Dx ¼ P�1
x Qx � Iy � I4 and Dy ¼ Ix � P�1

y Qy � I4 are first derivative operators in x- and y-directions, respectively. Ix and Iy

are the identity matrices of size ðM þ 1Þ � ðM þ 1Þ and ðN þ 1Þ � ðN þ 1Þ. Moreover,
F ¼ FI � eFV ; G ¼ GI � eGV

FI ¼ ðIx � Iy � A1Þv; FV ¼ ðIx � Iy � B11Þvx þ ðIx � Iy � B12Þvy;

GI ¼ ðIx � Iy � A2Þv; GV ¼ ðIx � Iy � B21Þvx þ ðIx � Iy � B22Þvy;
and vx ¼ Dxv; vy ¼ Dyv. Let P ¼ Px � Py and multiply Eq. (7) with vTðP � I4Þ. (This is the discrete equivalent of multiplying
(3) with vT and integrating over the computational domain to get the energy estimate (6).)

This leads to
vTðP � I4Þvt þ vTðQ x � Py � I4ÞFþ vTðPx � Q y � I4ÞG ¼ 0: ð8Þ

By adding the transpose of Eq. (8) to itself and using the SBP relations
Qx þ QT
x ¼ diagð�1; 0; . . . ; 0;1Þ; Q y þ Q T

y ¼ diagð�1;0; . . . ;0;1Þ; ð9Þ

we can write the result as
d
dt
kvk2

P�I4

� �
¼ �ITþ eVT: ð10Þ
The inviscid term IT in (10) is
IT ¼ vTðQ x � Py � I4ÞFI þ ðFIÞT Q T
x � Py � I4

� �
v þ vTðPx � Q y � I4ÞGI þ ðGIÞT Px � Q T

y � I4

� �
v

¼ vT
EðPy � I4ÞFI

E|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
East

�vT
WðPy � I4ÞFI

W|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
West

�vT
S ðPx � I4ÞGI

S|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
South

þvT
NðPx � I4ÞGI

N|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
North

: ð11Þ
The viscous term VT in (10) can be written as
VT ¼ vTðQ x � Py � I4ÞFV þ ðFV ÞT Q T
x � Py � I4

� �
v þ vTðPx � Q y � I4ÞGV þ ðGV ÞTðPx � Qy � I4ÞTv

¼ 2 vT
EðPy � I4ÞFV

E|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
East

�2 vT
WðPy � I4ÞFV

W|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
West

�2 vT
S ðPx � I4ÞGV

S|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
South

þ2 vT
NðPx � I4ÞGV

N|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
North

�2 vx

vy

� 	T
P � B11 P � B12

P � B21 P � B22

� 	
vx

vy

� 	
: ð12Þ



J. Nordström et al. / Journal of Computational Physics 228 (2009) 9020–9035 9023
An expanded version of Eq. (10) using the relations above becomes
d
dt
kvk2

P�I4

� �
¼ �vT

EðPy � I4ÞðFI
E � 2eFV

E Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
East

þvT
W ðPy � I4ÞðFI

W � 2eFV
WÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

West

þvT
S ðPx � I4ÞðGI

S � 2eGV
S Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

South

�vT
NðPx � I4ÞðGI

N � 2eGV
NÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

North

� 2e
vx

vy

� 	T
P � B11 P � B12

P � B21 P � B22

� 	
vx

vy

� 	
: ð13Þ
Note that for square matrices P and B11 (or B12; B21 and B22) the Kronecker product P � B11 and B11 � P are even permutation
similar, that is, there exists a permutation matrix U such that P � B11 ¼ UTðB11 � PÞU, see [11] for details. Eq. (13) can there-
fore be written
d
dt
kvk2

P�I4

� �
¼ BT� 2e

wx

wy

� 	T B11 B12

B21 B22

� 	
� P

wx

wy

� 	
; ð14Þ
where BT collect all the boundary terms in (13) and wx ¼ Uvx; wy ¼ Uvy.
Exactly similar to the continuous case, a bounded energy growth in (14) require boundedness in terms of given data of the

boundary terms (East, West, North and South). Again, that is dealt with in the papers [26,28] where the boundary conditions
are implemented using penalty terms. The contribution from the quadratic form in (14) is negative semi-definite since the
matrix P is positive definite and B ¼ ½B11 B12; B21 B22� is positive semi-definite.

Exactly similar to the continuous case, we summarize the result for the semi-discrete single domain problem (7) in the
following proposition.

Proposition 4.1. The semi-discrete problem (7) is stable if the boundary terms are limited by appropriate boundary procedures.
5. Stable and conservative interface conditions

We consider a computational domain consisting of two sub-domains and a common interface at x ¼ 0, see Fig. 1. Let u
and v be the unknowns in the left and right sub-domain, respectively, and introduce the superscripts L and R to identify
the left and right sub-domains.

The semi-discrete approximation of (2) on the two sub-domains with an interface can be written
ut þ DL
xFL þ DL

yGL ¼ ðMLÞ�1 RL
1 ui � vi½ � þ RL

2 ðF
V ÞLi � ðF

V ÞRi
h i� �

; ð15aÞ

vt þ DR
x FR þ DR

yGR ¼ ðMRÞ�1 RR
1 vi � ui½ � þ RR

2 ðF
V ÞRi � ðF

V ÞLi
h i� �

; ð15bÞ
where the matrices EL; ER picks out the parts of the vectors residing at the interface such that for example ui ¼ ELu; vi ¼ ERv.
In the following, the subscript i indicates that the quantity resides on the interface. We also have the definitions:
DL
x ¼ PL

x

� ��1
Q L

x � IL
y � I4; DL

y ¼ IL
x � PL

y

� ��1
Q L

y � I4;

DR
x ¼ PR

x

� ��1
Q R

x � IR
y � I4; DR

y ¼ IR
x � PR

y

� ��1
Q R

y � I4;

ML ¼ PL
x � PL

y � I4; MR ¼ PR
x � PR

y � I4;

RL
1 ¼ ðE

LÞT PL
y � RL

1; RL
2 ¼ ðE

LÞT PL
y � RL

2;

RR
1 ¼ ðE

RÞT PR
y � RR

1; RR
2 ¼ ðE

RÞT PR
y � RR

2:

ð16Þ
X

Y

-1 -0.5 0 0.5 1-0.5

0

0.5

Fig. 1. A hybrid mesh of 65� 65þ 33� 65 grid points.
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The definitions of F and G are given in Section 4 above and RL
1; RR

1; RL
2; RR

2 unknown penalty matrices. Note that the outer
boundary conditions are neglected in this analysis, for separate treatment of these see [26,28].

We will determine the penalty matrices RL
1; RR

1; RL
2; RR

2 by stability and conservation requirements (see [3,15,16,18] for
previous applications of this technique). Applying the energy method to (15a) and (15b) yields
d
dt
kuk2

ML þ kvk2
MR

� �
þ 2eDiss ¼ wT

i Mwi; ð17Þ
where wi ¼ ½ui;vi; ðuxÞi; ðvxÞi; ðuyÞi; ðvyÞi�
T and
Diss ¼
ux

uy

� 	T PL
x � PL

y � B11 PL
x � PL

y � B12

PL
x � PL

y � B21 PL
x � PL

y � B22

" #
ux

uy

� 	
þ

vx

vy

� 	T PR
x � PR

y � B11 PR
x � PR

y � B12

PR
x � PR

y � B21 PR
x � PR

y � B22

" #
vx

vy

� 	
:

The matrix M in (17) determines the stability of the interface treatment. M is symmetric and the elements of M are
M11 ¼ PL
y � �A1 þ RL

1 þ RL
1

� �T

 �

; M12 ¼ PL
y ��RL

1 þ PR
y �� RR

1

� �T
;

M13 ¼ PL
y � eI4 þ RL

2

� �
B11; M14 ¼ PL

y ��RL
2B11;

M15 ¼ PL
y � eI4 þ RL

2

� �
B12; M16 ¼ PL

y ��RL
2B12;

M22 ¼ PR
y � A1 þ RR

1 þ RR
1

� �T

 �

; M23 ¼ PR
y ��RR

2B11;

M24 ¼ PL
y � �eI4 þ RR

2

� �
B11; M25 ¼ PL

y ��RR
2B12;

M26 ¼ PR
y � �eI4 þ RR

2

� �
B12; M33 ¼ M34 ¼ M35 ¼ M36 ¼ 0;

M44 ¼ M45 ¼ M46 ¼ 0; M55 ¼ M56 ¼ M66 ¼ 0:
Notice that the matrix M in its present form is indefinite.
In order to construct a symmetric semi-definite negative matrix on the right-hand side of Eq. (17) we must ‘‘borrow”

interface terms from Diss on the left-hand side, see [3]. The term Diss can be written as
Diss ¼ gDiss þ aLpL ðuxÞi
ðuyÞi

� 	T PL
y � B11 PL

y � B12

PL
y � B21 PL

y � B22

" #
ðuxÞi
ðuyÞi

� 	
þ bRpR ðvxÞi

ðvyÞi

� 	T PR
y � B11 PR

y � B12

PR
y � B21 PR

y � B22

" #
ðvxÞi
ðvyÞi

� 	
where pL ¼ PL
x

� �
M;M

; pR ¼ PR
x

� �
1;1

and
gDiss ¼
ux

uy

� 	T fPL
x � PL

y � B11
fPL

x � PL
y � B12fPL

x � PL
y � B21

fPL
x � PL

y � B22

24 35 ux

uy

� 	
þ

vx

vy

� 	T fPR
x � PR

y � B11
fPR

x � PR
y � B12fPR

x � PR
y � B21

fPR
x � PR

y � B22

24 35 vx

vy

� 	
:

The modified norms in gDiss are fPL
x ¼ PL

x � diagð0; . . . ;aLpLÞ and fPR
x ¼ PR

x � diagðbRpR; 0; . . . ;0Þ. Note that with 0 < aL; bR
6 1,

then fPL
x P 0 and fPR

x P 0 and hence gDiss P 0.
As a result, the modified version of Eq. (17) can be written as
d
dt
kuk2

ML þ kvk2
MR

� �
þ 2e gDiss ¼ wT

i
eMwi; ð18Þ
where eM plays the role of M except that the zero elements in M are replaced by
M33 ¼ �2eaLpLPL
y � B11; M35 ¼ �2eaLpLPL

y � B12;

M44 ¼ �2ebRpRPR
y � B11; M46 ¼ �2ebRpRPR

y � B12;

M55 ¼ �2eaLpLPL
y � B22; M66 ¼ �2ebRpRPR

y � 2B22;

M53 ¼ MT
35; M64 ¼ MT

46:
5.1. Conservation conditions

Before considering the stability, we investigate the conservation properties at the interface. Let u be a smooth test func-
tion with compact support, multiply Eq. (3) with u and integrate over the spatial domain X 2 ½�1;1� � ½0;1�. We obtain
ZZ

X
uT ut dxdy�

ZZ
X

uT
x F þuT

y G
� �

dxdy ¼ 0: ð19Þ
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The conservative form of Eq. (3) makes it possible to use integration-by-parts and move the differentiation on to the smooth
continuous function u.

We want to preserve this property in the discrete case. For the single domain problem this is trivial since the SBP oper-
ators are constructed to do just that, see Eq. (9). However, in the multi-domain case we have an interface and extra care is
necessary.

With a slight abuse of notation we also let u denote a smooth grid function. Note that this means that uL
i ¼ uR

i ¼ ui.
Multiplying Eqs. (15a) and (15b) by ðuT MÞL and ðuT MÞR, respectively, and using the SBP relations (9) leads to
ðuT MÞLut þ ðuT MÞRvt � uT
x MFþuT

y MG
� �L

� uT
x MFþuT

y MG
� �R

¼ IT: ð20Þ
The ML; MR involved in (20) are defined in (16). The left-hand side of (20) corresponds exactly to the left-hand side of (19).
As usual we have neglected the outer boundary terms.

If the interface term IT at the right-hand side of (20) vanish, we have a conservative scheme. The interface term is
IT ¼ uT
i � PL

y � A1

� �
ui þ PR

y � A1

� �
vi þ PL

y � RL
1 � PR

y � RR
1

� �
ðui � viÞ þ PL

y � eI4

� �
FV

i

� �L
� PR

y � eI4

� �
FV

i

� �R
�

þ PL
y � RL

1 � PR
y � RR

1

� �
ðFV

i Þ
L � FV

i

� �R

 �	

:

The choice PL
y ¼ PR

y and the conditions (21) below cancel the interface term IT in (20) and lead to a conservative
scheme:
RR
1 ¼ RL

1 � A1; RR
2 ¼ RL

2 þ eI4: ð21Þ
Remark. The conservation conditions (21) are a subset of the resulting stability conditions, see also [3,15,16,18] where
similar conservation conditions were derived.

Remark. The condition PL
y ¼ PR

y implies that the same SBP operators should be used in the y-direction in both sub-domains.
This restriction can be removed, and that will be the topic in a future paper.
5.2. Stability conditions

Inserting PL
y ¼ PR

y ¼ Py and the conservation conditions (21) into (18) results in
d
dt
kuk2

ML þ kvk2
MR

� �
þ 2e gDiss ¼ �xTðN � PyÞx; ð22Þ
where
x ¼

Uu
Wv
Uux

Wvx

Uuy

Wvy

2666666664

3777777775
; N ¼

N11 �N11 N13 N14 N15 N16

�N11 N11 �N13 �N14 �N15 �N16

NT
13 �NT

13 N33 0 N35 0

NT
14 �NT

14 0 N44 0 N46

NT
15 �NT

15 NT
35 0 N55 0

NT
16 �NT

16 0 NT
46 0 N66

26666666664

37777777775
:

The permutation matrices U and W are defined in Section 4 and
N11 ¼ A1 � RL
1 � RL

1

� �T

 �

; N13 ¼ � eI4 þ RL
2

� �
B11; N14 ¼ RL

2B11;

N15 ¼ � eI4 þ RL
2

� �
B12; N16 ¼ RL

2B12; N33 ¼ 2eaLpLB11;

N35 ¼ 2eaLpLB12; N44 ¼ 2ebRpRB11; N46 ¼ 2ebRpRB12;

N55 ¼ 2eaLpLB22; N66 ¼ 2ebRpRB22:
A bounded energy require a positive semi-definite matrix N. To simplify the algebra we introduce a transformation matrix S
such that ST S ¼ I and
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S ¼

1ffiffi
2
p I4

1ffiffi
2
p I4 0 0 0 0

0 0 I4 0 0 0
0 0 0 0 I4 0
0 0 0 I4 0 0
0 0 0 0 0 I4

1ffiffi
2
p I4 � 1ffiffi

2
p I4 0 0 0 0

26666666664

37777777775
; bN ¼ SNST ¼

0 0 0 0 0 0
0 N33 N35 0 0

ffiffiffi
2
p

N13

0 NT
35 N55 0 0

ffiffiffi
2
p

N15

0 0 0 N44 N46

ffiffiffi
2
p

N14

0 0 0 NT
46 N66

ffiffiffi
2
p

N16

0
ffiffiffi
2
p

NT
13

ffiffiffi
2
p

NT
15

ffiffiffi
2
p

NT
14

ffiffiffi
2
p

NT
16 2N11

26666666664

37777777775

To simplify the matrix bN we introduce
a ¼ aLpL; b ¼ bRpR; RL
2 ¼ �eD; RL

1 ¼ RL
1I þ eRL

1V ; ð23Þ
where we choose D to be diagonal. The splitting and scaling with e in (23) are made for convenience and means that bN can be
split into an inviscid part bNI and a viscous part bNV which simplifies the analysis. By making use of (23) we get
bN ¼ 020;20 020;4

04;20 2 A1 � RL
1I � RL

1I

� �T

 �24 35

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}bNI

þ e

04;4 04;8 04;8 04;4

08;4 2aK11 08;8

ffiffiffi
2
p

K13

08;4 08;8 2bK11

ffiffiffi
2
p

K23

04;4

ffiffiffi
2
p

KT
13

ffiffiffi
2
p

KT
23 2K33

266664
377775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}bNV

;
ð24Þ
where K33 ¼ �ðR1V þ ðR1V ÞTÞ and
K11 ¼
B11 B12

B21 B22

� 	
; K13 ¼

ðD� I4ÞB11

ðD� I4ÞB12

� 	
; K23 ¼

�DB11

�DB12

� 	
:

The subscripts on 0 in (24) indicate the size of the block.
The condition for bNI in Eq. (24) to be positive semi-definite is
A1 � RL
1I � RL

1I

� �T
P 0: ð25Þ
If A1 is rewritten as A1 ¼ XTKX ¼ XTKþX þ XTK�X ¼ Aþ1 þ A�1 where Kþ ¼ diagðmaxðki;0ÞÞ; K� ¼ diagðminðki;0ÞÞ and ki are
the eigenvalues of A1, we find that (25) is satisfied if
RL
1I þ RL

1I

� �T
6 A�1 : ð26Þ
Next we turn to the more difficult analysis of the definiteness of bNV . The dimensions of bNV and the matrices K11; K13; K23

and K33 are given in (24). Note that since the matrices Bij all lack the first row and column, the only non-zero part of bNV that
we need to consider for definiteness is the condensed version (we neglect the rows and columns that consist of zeros) of the
lower 3� 3 block in (24).

Let us denote the condensed version of the lower 3� 3 block in bNV with eN and use a similar notation also for the rest of
the matrices. That means that we should consider definiteness of
eN ¼ 2aeK 11 06;6

ffiffiffi
2
p eK 13

06;6 2beK 11

ffiffiffi
2
p eK 23ffiffiffi

2
p eK T

13

ffiffiffi
2
p eK T

23 2eK 33

2664
3775; eK 33 ¼ �ðRþ RTÞ ð27Þ

eK 11 ¼
eB11

eB12eB21
eB22

" #
; eK 13 ¼

ðD� I3ÞeB11

ðD� I3ÞeB12

" #
; eK 23 ¼

�DeB11

�DeB12

" #
: ð28Þ
Note again that we have now replaced all 4� 4 matrices with the corresponding 3� 3 ones. We have also kept the notation D
and changed R1V to R.

We find that a sufficient condition for positive semi-definiteness of eN is
eK 11 > 0 and � ðRþ RTÞ ¼ eK 33 P
1

2a
eK T

13
eK�1

11
eK 13 þ

1
2b
eK T

23
eK�1

11
eK 23; ð29Þ
because we can factorize eN as eN ¼ eLDLT with
D ¼
2aeK 11 0 0

0 2beK 11 0
0 0 D33

264
375; L ¼

I 0 0
0 I 0

1ffiffi
2
p

a
eK T

13
eK�1

11
1ffiffi
2
p

b
eK T

23
eK�1

11 I

264
375; ð30Þ
and D33 ¼ 2eK 33 � 1
a
eK T

13
eK�1

11
eK 13 � 1

b
eK T

23
eK�1

11
eK 23.
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The conditions (21), (25) and (29) make the matrix bN positive semi-definite, which implies that matrix N is positive semi-
definite, since for a arbitrary vector y,
Fig. 2

Fig. 3.
interfac
yT Ny ¼ yT ST bNSy ¼ ŷT bN ŷ P 0:
The matrix eK�1
11 can be written in block matrix form as
eK�1
11 ¼

eB�1
11 þ eB�1

11
eB12
eD�1eB21

eB�1
11 �eB�1

11
eB12
eD�1

�eD�1eB21
eB�1

11
eD�1

" #
;

with eD ¼ eB22 � eB21
eB�1

11
eB12. The choice D ¼ dI3 ðd 2 RÞ simplifies the algebra considerably and leads to
eK T

13
eK�1

11
eK T

13 ¼ ð1� dÞ2eB11; and eK T
23
eK�1

11
eK T

23 ¼ d2eB11:
That means that the last condition in (29) together with the assumption that R is symmetric leads to
R 6 � ½bð1� dÞ2 þ ad2�e
4ab

eB11: ð31Þ
Sub−grid 2Sub−grid 1

Interface

. Typical standard multi-block interface treatment. Layers of unknowns, here indicated by the dashed lines, are transferred between sub-grids.

Sub−grid 2Sub−grid 1

Interface

Interface treatment for the current method. Only data on the interface between the two sub-grids are exchanged. Note that the nodes on the
e are duplicated. One set belongs to the left sub-grid, the other set to the right sub-grid.



Table 2
The convergence rates of density on two non-uniform sub-domains.

Points (left) + (right) 2nd order 4th order 6th order 8th order

Err q Err q Err q Err q

33� 33þ 17� 33 �1.43 – – – �1.30 – �1.39 –
65� 65þ 33� 65 �2.02 1.94 �2.35 2.59 �2.06 2.52 �2.04 –
129� 129þ 65� 129 �2.65 2.09 �3.23 2.91 �3.02 3.21 �3.14 3.68
257� 257þ 129� 257 �3.26 2.05 �4.13 2.98 �4.09 3.53 �4.48 4.43
513� 513þ 257� 513 �3.88 2.05 �5.02 2.98 �5.22 3.76 �5.92 4.80
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Fig. 4. Density isolines for a 4th order calculation. 65� 65 grid points are used in both sub-domains.

Table 1
The convergence rates of density on two uniform sub-domains.

Points/block 2nd order 4th order 6th order 8th order

Err q Err q Err q Err q

17� 17 �1.29 – �1.47 – �1.14 – – –
33� 33 �1.89 1.99 �2.24 2.56 �1.90 2.52 �1.89 –
65� 65 �2.55 2.18 �3.14 3.00 �2.92 3.41 �3.03 3.77
129� 129 �3.18 2.11 �4.12 3.24 �4.01 3.59 �4.39 4.53
257� 257 �3.80 2.03 �5.06 3.15 �5.11 3.66 �5.90 5.01
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It is easy to verify that the right-hand side of (31) has the least restrictive value �eeB11=ð4ðaþ bÞÞ when d ¼ b=ðaþ bÞ.
Now we have done all the necessary derivations and we can summarize the result in the following proposition.

Proposition 5.1. If the conditions
RL
1I 6 A�1 =2 ðinviscid stabilityÞ; ð32aÞ

RL
1V 6 �eeB11=4ðaþ bÞ ðviscous stabilityÞ; ð32bÞ

RL
2 ¼ �ebI4=ðaþ bÞ ðviscous stabilityÞ; ð32cÞ

RR
1 ¼ RL

1 � A1 ðinviscid conservationÞ; ð32dÞ

RR
2 ¼ RL

2 þ eI4 ðviscous conservationÞ; ð32eÞ
are satisfied, then the scheme (15) and (16) is stable and conservative.

Remark. Recall that a ¼ aLpL and b ¼ bRpR ð0 6 aL; bR
6 1Þ where
pL ¼ DxL �

1
2 2nd order SBP;
17
48 4th order SBP;
13;649
43;200 6th order SBP;

8><>: pR ¼ DxR �

1
2 2nd order SBP;
17
48 4th order SBP;
13;649
43;200 6th order SBP:

8><>:

In order to limit the spectral radius of the problem, the values of aL and bR should be chosen as large as possible, that is
aL ¼ bR ¼ 1.
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Fig. 5. The errors in density at y ¼ 0 with SBP operators of different orders.



9030 J. Nordström et al. / Journal of Computational Physics 228 (2009) 9020–9035
Remark. Note again that the conservation conditions are a subset of the total number of stability conditions. The conditions
(32e) are sufficient (but might not be necessary and unique) for a stable and conservative interface treatment.

Remark. The interface treatment do not introduce stiffness for the time integration procedure unless the penalty parame-
ters in (32e) are increased far beyond the necessary stability limit.
5.3. Practical implementation of the interface treatment

We now illustrate how to practically implement the method. Consider the interface between two sub-grids, as shown in
Fig. 1. In the more standard multi-block interface treatment typically layers of unknowns are transfered between the sub-
grids, see Fig. 2, and the boundaries can be treated in the same way as internal points.

In case the grid over the interface is smooth (and the methodology is stable) this approach will give good results (even
better than results obtained with the approach presented in this paper). However, in practice the grid over the interface will
never be smooth (otherwise a splitting into sub-grids would not have been necessary) and will be clearly visible in the
results. This is even true when a finite volume formulation is used instead of a finite difference method.

In contrast, the method presented in this work does not require the exchange of layers of unknowns; only data on the
actual interface are required, see the RHS of Eqs. (15a) and (15b). Consequently, the grid over the interface does not have
to be smooth in order to obtain high quality numerical solutions. The method proceeds as follows, see also Fig. 3:

1. Compute for each of the sub-grids the spatial discretization as indicated by the LHS of Eqs. (15a) and (15b). The require-
ments for this discretization are discussed in Section 4.

2. The solution and the viscous flux vector of the vertices located at the interface are made available to the adjacent sub-grid.
3. The RHS of Eqs. (15a) and (15b) can now be computed with the known values of the R’s, Eq. (32e) and matrices PL

x, PL
y; PR

x

and PR
y . These terms are added to the spatial residual of the boundary nodes computed in item 1.

4. The entire spatial residual is known and a time integration step can be made.

The entire procedure is repeated until the desired number of time steps is taken.
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Fig. 6. The errors in density at y ¼ 0 with SBP operators of different orders.
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6. Numerical experiments

The derivation of the stability and conservation properties as expressed in Proposition 5.1 was done for the constant coef-
ficient problem. We now verify that the result of the linear analysis is valid for the full non-linear Navier–Stokes equations.

6.1. Verification of accuracy and stability of the new interface treatment

We consider a calculation on two sub-domains coupled at an interface, see Fig. 1. A stationary viscous shock problem
where the middle of shock is located at the interface is calculated. This problem has an analytical solution (for Prandtl num-
ber Pr ¼ 3=4) which means that we have full control of the errors. The Mach number in front of the shock in the reference
frame of the shock is 2.0 and the angle of the shock relative to the Cartesian frame is 15�. The Reynolds number Re ¼ 50:0 is
based on the Mach number of shock. The penalty terms in (32e) are chosen by the minimum required values. We integrate
the solution to steady-state using the third order low storage explicit time advancement scheme of Le and Moin [13].

In the hybrid scheme, the second derivative SBP operator is constructed with 2pth ðp ¼ 1;2; . . .Þ order accuracy internal
and ðp� 1Þth order at the boundary by using a diagonal norm. It was proved in [27] that if the solution is point wise
bounded, the accuracy of the scheme is two orders higher than the accuracy of the second derivative approximation at
the boundaries. The convergence rates for the second-, fourth-, sixth- and eighth-order schemes are thus 2, 3, 4 and 5,
respectively. Since the errors for all variables (density, velocities and energy) are very similar, only the density errors are
shown in our calculations. The accuracy is shown in Tables 1 and 2. The results are in agreement with the theory, see [8,9,27].
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Fig. 7. A 4th order calculation without the necessary viscous penalty terms.
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In the next calculation we consider the solution computed on the mesh in Fig. 1. Fig. 4(a) shows the density isolines using
the 4th order discretization. The corresponding cut at y ¼ 0 can be found in Fig. 4(b). The distribution of density close to the
interface x ¼ 0 is very smooth, which illustrates that the interface does not introduce large reflections and oscillations.

The density errors at y ¼ 0 with SBP operators of different order are shown in Figs. 5 and 6. Fig. 5 shows the result for two
uniform meshes, while in Fig. 6 the right block is twice as coarse in the x-direction as the left block. Figs. 5(a) and 6(a) show
that the higher order schemes have rather large errors, comparable to the lower order schemes close to the interface x ¼ 0 for
the coarse mesh. However, when the mesh is refined, (129� 129 and 65� 129, respectively) the higher order schemes out-
perform the lower order schemes (see Figs. 5(b) and 6(b)). Tables 1 and 2 and Figs. 5 and 6 illustrate that the interface treat-
ment is stable and accurate for all orders of accuracy.

To further illustrate the necessity of having correct penalty terms we neglect the viscous penalty term completely. This
leads to a complete failure for all schemes (blow up in a couple of time steps), see Fig. 7.
6.2. Two applications using the new interface treatment

We start by demonstrating the multi-block method on a moving shock problem. The unsteady computation has been
carried out on a uniform grid of 65� 65 in each block in combination with the 4th order accurate SBP operator. All penalty
parameters have the same values as for the previous steady case. The shock moves at Mach = 0.15 under 45�. Snapshots of
the solution between t ¼ 0:0 and t ¼ 8:0 are shown in Fig. 8. The shape of the shock through the interface x ¼ 0 remains in-
tact, and the corresponding errors are small, see Fig. 9.

To further illustrate the performance and applicability of the new interface treatment we consider the flow around a cyl-
inder. The Mach number is 0.1 and the Reynolds number is 100. The computational results are shown for a large time
ðT ¼ 1500Þwhen the initial disturbances have died out and a periodic shedding of von Karman vortices has been established,
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Fig. 8. Density isolines, 4th order accuracy for the unsteady shock problem.



0.001
0.0009
0.0008
0.0007
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001
0

t = 10.0

Y

-0.4

-0.2

0

0.2

0.4
0.001
0.0009
0.0008
0.0007
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001
0

t = 8.0

Y

-0.4

-0.2

0

0.2

0.4
0.001
0.0009
0.0008
0.0007
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001
0

t = 4.0

X
-1 -0.5 0 0.5 1

0.001
0.0009
0.0008
0.0007
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001
0

t = 2.0

X

Y

-1 -0.5 0 0.5 1

X
-1 -0.5 0 0.5 1

X
-1 -0.5 0 0.5 1

X
-1 -0.5 0 0.5 1

X
-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

Y

-0.4

-0.2

0

0.2

0.4

Y

-0.4

-0.2

0

0.2

0.4

Y

-0.4

-0.2

0

0.2

0.4
0.001
0.0009
0.0008
0.0007
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001
0

t = 0.0

Density error snapshots of the moving viscous shock problem

0.001
0.0009
0.0008
0.0007
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001
0

t = 6.0

Fig. 9. The error in density, 4th order accuracy for the unsteady shock problem.

Fig. 10. A global view of 5th order accurate cylinder calculation showing the shedding of von Karman vortices. The x-momentum qu is shown.
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Fig. 11. A zoom in on the velocity field and the mesh close to a block interface. The velocity field is continuous over the interface, the mesh is not.
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see Fig. 10. The flow field in terms of qu is shown. The 5th order accurate method is used. We have used 5 blocks with
201 � 101 grid points in each block (the utmost right block is not included in the figure). The global quantities such as Strou-
hal number, lift and drag are correctly predicted, for more details on this, see [28].

To investigate the specific topic of this paper we consider the solution close to the block interface on the upper ‘‘north
east” side of the cylinder. Fig. 11 shows the velocity field and the mesh. The mesh is clearly not smooth, but the solution is.
7. Conclusions

We have proved stability and conservation of a high order accurate multi-block finite difference method applied to the
Navier–Stokes equations. As theoretical tools we have used difference operators of SBP type, a penalty technique for the
interface conditions and the energy method.

The stability and conservation conditions are derived without approximations. This indicates that the derived conditions
are sharp. That conclusion is supported by the numerical calculations which show that instabilities occur if the conditions
are violated.

Mesh refinement studies for a steady viscous shock and computations of a moving viscous shock has been performed. We
also considered the flow over a cylinder. The numerical experiments support the theoretical conclusions and show that the
interface coupling is stable and converge at the correct order.
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