Lecture 1

1 Well-posed problems

General IBVP:

In (1), $\mathrm{P}=$ Diff. operator, $\mathrm{B}=$ Boundary operator, $\mathrm{F}=$ Forcing function, $\mathrm{g}=$ Boundary data, $\mathrm{f}=$ Initial data. $\mathrm{F}, \mathrm{g}, \mathrm{f}=$ Data.

The problem (1) is well-posed if u exists and satisfies

$$
\begin{equation*}
\|u\|_{I}^{2} \leq K\left(\|f\|_{I I}^{2}+\|F\|_{I I I}^{2}+\|g\|_{I V}^{2}\right) . \tag{2}
\end{equation*}
$$

In (2), $K=K(t \leq T)$ is independent of the data $\mathrm{F}, \mathrm{f}, \mathrm{g} ; \mathrm{K}$ small is good.

Why is this interesting?
Consider the perturbed problem

$$
\begin{array}{lll}
u_{t}=P u+F+\delta F, & & x \in \Omega, \quad t \geq 0 \\
B u=g+\delta g, & & x \in \Omega, \quad t \geq 0 \tag{3}\\
u & =f+\delta f, & \\
u \in \Omega, \quad t=0
\end{array}
$$

(3)-(1) $\Rightarrow w=(v-u), \mathrm{P}=$ lin. op.

$$
\begin{array}{lll}
w_{t}=P w+\delta F, & x \in \Omega, \quad t \geq 0 \\
B w=\delta g, & & x \in \Omega, \quad t \geq 0 \tag{4}\\
w=\delta f, & & x \in \Omega, \quad t=0
\end{array}
$$

Apply (2) to (4) \Rightarrow

$$
\begin{equation*}
\|w\|_{I}^{2} \leq K\left(\|\delta f\|_{I I}^{2}+\|\delta F\|_{I I I}^{2}+\|\delta g\|_{I V}^{2}\right) \tag{*}
\end{equation*}
$$

Now clearly, $\mathrm{w}=\mathrm{v}-\mathrm{u}$ is small if K moderate and perturbations small.

A good numerical approximation possible. Choice of numerical method next step.

A good numerical approximation not possible. No next step! (change problem!).

Note: Uniqueness follows from (*).

Ex:

$$
\begin{gather*}
\begin{array}{cl}
u_{t}=-u_{x}+F(x, t), & x \leq 0, \quad t \leq 0 \\
u=g(t), & x=0, \quad t \geq 0 \\
u=f(x), & x \leq 0, \quad t=0
\end{array} \\
P=-\delta / \delta x, \Omega: x \geq 0, \delta \Omega: x=0 \tag{4}\\
\underbrace{\int_{0}^{\infty} u u_{t} d x}_{\left.\frac{1}{2} \frac{d}{d t}\|u\|^{2}\right)}=\underbrace{-\int_{0}^{\infty} u u_{x} d x}_{-\left.\frac{u^{2}}{2}\right|_{0} ^{\infty}}+\underbrace{\int_{0}^{\infty} u T d x}_{\leq \frac{1}{2}\left(\eta\|u\|^{2}+\frac{1}{\eta}\|F\|^{2}\right)} \Rightarrow(u=0 \text { at } x \rightarrow \infty) \\
\frac{d}{d t}\|u\|^{2} \leq \eta\|u\|^{2}+g^{2}+\eta\|F\|^{2} \Rightarrow \\
\|u\|^{2} \leq e^{\eta T}\left[\|f\|^{2}+\int_{0}^{T} e^{-\eta \xi}\left(g^{2}+\frac{1}{\eta}\|F\|^{2}\right) d \xi\right]
\end{gather*}
$$

Compare with (2).

$$
K=e^{\eta T},\| \|_{I}^{2}=\| \|_{I I}^{2},\|F\|_{I I I}^{2}=\int_{0}^{T} e^{-\eta \xi} \frac{1}{\eta}\|F\|_{I}^{2} d \xi,\|g\|_{I V}^{2}=\int_{0}^{T} e^{-\eta \xi} g^{2} d \xi
$$

Well-posed if u exists (which it does in this case).

An Ill-posed problem (heat equation backwards)

$$
\begin{array}{ll}
u_{t} & =-u_{x x}, \quad 0 \leq x \leq 2 \pi, \quad t \geq 0 \\
u(x, 0)=f(x), \quad 0 \leq x \leq 2 \pi, \quad t=0 \tag{6}
\end{array}
$$

$u=2 \pi$ periodic sol. in space

$$
\begin{gather*}
\Rightarrow u=\frac{1}{\sqrt{2 \pi}} \sum_{w=-\infty}^{\infty} \hat{u}(w, t) e^{i w x} \Rightarrow \\
\hat{u}_{t}=w^{2} \hat{u} \Rightarrow \hat{u}=e^{w^{2} t} \hat{u}(0)=e^{w^{2} t} \hat{f}(w) \tag{7}
\end{gather*}
$$

Lemma (Parseval's relation)
Let $u=\frac{1}{\sqrt{2 \pi}} \sum_{-\infty}^{\infty} \hat{u}(w, t) e^{i w x}$, then $\|u\|^{2}=\int_{0}^{2 \pi}|u|^{2} d x=\sum_{-\infty}^{\infty}|\hat{u}(w)|^{2}$.
Parseval's relation $\Rightarrow(7)$ goes to $\|u\|^{2}=\sum_{-\infty}^{\infty} e^{2 w^{2} t}|\hat{f}|^{2} \leq K\|f\|^{2}$
\because Impossible to bound (by $K<\infty$). Small errors amplified.
\because Well-posedness very important.

Another Ill-posed problem (even more relevant)

$$
\begin{align*}
& u_{t}+u_{x}=0, \quad 0 \leq x \leq 1, \quad B u=g \\
& u(x, 0)=0 \tag{5}
\end{align*}
$$

Laplace $\Rightarrow s \hat{u}+\overline{u_{x}}=0 \Rightarrow \hat{u}=C_{1} e^{-s x}$
$\mathrm{B}=1$ (Standard case).
B.C. $\Rightarrow C_{1}=\hat{g} \Rightarrow \hat{u}=\hat{g} e^{-s x} \Rightarrow \underline{\text { well-posed }}$
$B=\alpha+\beta \partial / \partial x$ (Robin cond.)
B.C. $\Rightarrow C_{1}(\alpha-\beta s)=\hat{g} \Rightarrow \hat{u}=\frac{\hat{g}}{\alpha-\beta s} e^{-s x}$
$s=\frac{\alpha}{\beta}$ singularity $\frac{\alpha}{\beta} \gg 1 \Rightarrow$
Large exponential growth when transforming back. \Rightarrow Ill-posed

2 Well-posedness of non-linear problems

(See Kreiss and Lorenz, IBVPs and the N-S equations, Academic Press 1989)
Linearizion principle: A non-linear problem is well-posed at u if the linear problem obtained by linearizing at all functions near u is well-posed.

Localization principle: If all frozen coefficient problems are well-posed, then the linear problem is also well-posed.

Ex:

$$
\begin{array}{ll}
u_{t}+u u_{x} & =0, \text { non-linear } \\
u_{t}+\bar{u}(x, t) u_{x} & =0, \text { linear } \tag{6}\\
u_{t}+\bar{u} u_{x} & =0, \text { frozen coeff. }
\end{array}
$$

Here there is more research to do!

3 Summary of well-posedness

A problem is well-posed if:
i) A solution exists.
ii) The solution is unique.
iii) The solution can be bounded by the data of the problem.

A nonlinear problem is related to well-posedness through the linearizion and localization principles. (More work to do)

If a problem is not well-posed, do not discretize. Modify first, in practice change B.C.!

