Lecture 2

1 Periodic problems and Fourier analysis

How should we define well-posedness?
Consider the IVP (or Cauchy problem) in 1D (2π-periodic)

$$
\begin{array}{ll}
u_{t} & =P(\partial / \partial x) u+F \\
u(x, 0) & =f(x) \tag{2.6}
\end{array}
$$

$\mathrm{P}(\alpha u+\beta v)=\alpha P u+\beta P v$, Linear operator.

Ex. 1:

$$
\begin{gathered}
P=A \partial / \partial x ; A=\left(\begin{array}{cc}
0 & 4 \\
1 & 0
\end{array}\right) \\
T^{-1} A T=\Lambda=\left(\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right), T=\left(\begin{array}{cc}
1 & 1 \\
\frac{1}{2} & \frac{-1}{2}
\end{array}\right), T^{-1}=\left(\begin{array}{cc}
\frac{1}{2} & 1 \\
\frac{1}{2} & -1
\end{array}\right)
\end{gathered}
$$

Rewrite $\Rightarrow v=T^{-1} u, g=T^{-1} f \Rightarrow$

$$
\begin{array}{ll}
v_{t} & =\Lambda v_{x} \\
v(x, 0) & =g(x)
\end{array}
$$

Solution:

$$
\begin{aligned}
& v^{(1)}=g^{1}(x+2 t) \\
& v^{(2)}=g^{2}(x-2 t) \quad \text { Exact solution. } \\
&\|v\| \leq\left\|T^{-1}\right\|\|f\| \\
&\|u\| \leq\|T\|\|v\| \leq \underbrace{\|T\|\left\|T^{-1}\right\|}_{K=\text { condition number }}\|f\|
\end{aligned}
$$

Ex. 2:

$$
\left.\begin{array}{ll}
u_{t} & =\alpha u \\
u(x, 0) & =f(x)
\end{array}\right\} \Rightarrow \underline{u=e^{\alpha t} f} \text { exact sol., } \underline{\|u\| \leq e^{\alpha t}\|f\|}
$$

$\underline{\text { Definition of well-posedness }}$

The problem (2.6) is well-posed if for $\mathrm{F}=0$, there is a unique solution satisfying

$$
\begin{equation*}
\|u\| \leq K e^{\alpha t}\|f\| \tag{2.7}
\end{equation*}
$$

K and α are constants, No zero order terms, $\Rightarrow \alpha=0$.

If a forcing funtion is present?

$$
\|u\|^{2} \leq K e^{2 \alpha t}\left(\|f\|^{2}+\int_{0}^{t}\|F\|^{2} d t\right)
$$

Proof: Duhamel's principle, see GKO.
\because Very important: Forcing functions do not influence well-posedness.

Existence is generally very difficult.
$\underline{\text { Uniqueness follows directly from the energy estimate. }}$

Consider (2.6) with $P=\sum_{r=0}^{q} A_{r} \frac{\partial^{r}}{\partial x^{r}}, \mathrm{~F}=0, A_{r}=$ constant matrics, $u=$ $\frac{1}{\sqrt{2 \pi}} \sum_{-\infty}^{\infty} \hat{u}_{w} e^{i w x}, u=2 \pi$ periodic.

$$
\Rightarrow \hat{u}=e^{\hat{P}(i w) t} \hat{f}(w) ; \hat{P}(i w)=\sum_{r=0}^{q} A_{r}(i w)^{r}
$$

$\hat{P}(i w)=$ symbol or Fourier transform of P .
$e^{\hat{P}(i w) t}=$ matrix exponential.

Ex.:

$$
u_{t}+A u_{x}=B u_{x x} ; A, B=m \times m, P(i w)=-\left(i w A+w^{2} B\right)
$$

Theory (2.6) is well-posed if and only if there are constants K and α such that

$$
\begin{equation*}
\left|e^{\hat{P}(i w) t}\right| \leq K e^{\alpha t} \tag{2-9}
\end{equation*}
$$

Proof: $\|u\|^{2}=\sum_{-\infty}^{\infty}\left|\hat{u}^{2}\right|=\sum_{-\infty}^{\infty}\left|e^{\hat{P}(i w) t} \hat{f}\right|^{2} \leq\left|e^{\hat{P}(i w) t}\right|_{\max }^{2} \sum_{-\infty}^{\infty}|\hat{f}|^{2}=K^{2} e^{2 \alpha t}\|f\|^{2}$

Eigenvalus are easier to work with.

Def.: The Petrovski condition is satisfied if the eigenvalues $\lambda(w)$ of $\hat{P}(i w)$ satisfy

$$
\begin{equation*}
\operatorname{Re}(\lambda(w)) \leq \alpha \tag{2.10}
\end{equation*}
$$

$\alpha=$ constant indep. of $\mathrm{w}, \alpha=0$ if no zero order terms.

Theorem The Petrovski condition is a necessary condition and sufficiant if there is a constant K and matrix $\mathrm{T}(w)$ such that $T^{-1}(w) \hat{P}(i w) T(w)$ is diagonal and $\left|T^{-1}(w)\right||T(w)| \leq K$ for all w.
Proof

$$
\begin{gathered}
\hat{u}=e^{\hat{P} t} \hat{f}=T\left[e^{-\Lambda t}\right] T^{-1} \hat{f} \\
\|u\|^{2} \leq \sum_{\infty}^{\infty}|T|^{2}\left|e^{\Lambda t}\right|^{2}\left|T^{-1}\right|^{2}|\hat{f}|^{2} \leq\left|T^{-1}\right|^{2}|T|^{2} \sum_{-\infty}^{\infty}\left|e^{\Lambda t}\right|^{2}|\hat{f}| \leq K^{2}\left|e^{\Lambda t}\right|^{2}\|f\|^{2} \leq K^{2} e^{2 \alpha t}\|f\|^{2} \\
\left(\left|e^{\Lambda t}\right|^{2}=\operatorname{diag}\left(e^{\lambda_{1} t}, e^{\lambda_{2} t}, \ldots, e^{\lambda_{m} t}\right) \leq e^{2 \alpha t}\right)
\end{gathered}
$$

Multiple dimensions, exactly similar.
define $\underset{\sim}{x}=\left(x_{0}^{1}, x_{1}^{2}, \ldots, x^{\alpha}\right)^{T}$
$w=\left(w^{1}, w^{2}, \ldots, w^{\alpha}\right)^{T}$
$\hat{P}(i \underset{\sim}{w})$ is obtained by $\partial / \partial x^{r} \rightarrow i w^{r}$

Ex:

$$
P=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \partial / \partial x+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \partial / \partial y \rightarrow \hat{p}(i \underset{\sim}{w})=i\left(\begin{array}{ll}
w^{1} & w^{2} \\
w^{2} & w^{1}
\end{array}\right)
$$

