Lecture 3

1 Difference approximations

(Very diff. from book)
Consider the approx. of the heat eq.

$$
\begin{align*}
& \frac{d}{d t} u_{j}=Q u_{j}=\left(u_{j+1}-2 u_{j}+u_{i+1}\right) / h \tag{2.12}\\
& u_{j}(0)=f_{j}, \quad j=0,1, \ldots, N \quad t \geq 0
\end{align*}
$$

Expand in Fourier-series \Rightarrow

$$
\begin{aligned}
& \frac{d}{d t}\left(\hat{u}_{w}\right)=\hat{Q} \hat{u}_{w} \\
& \hat{u}_{w}=\hat{f}_{w}
\end{aligned} \Rightarrow \hat{u}_{w}(t)=e^{\hat{Q} t} \hat{f}_{w}
$$

\because Exactly as in cont. case.

We have $Q=D_{+} D_{-} \Rightarrow Q e^{i w x_{j}}=e^{i w x_{j}} \hat{Q}$

$$
\hat{Q}=-\frac{4}{h^{2}} \sin ^{2}(\zeta / 2) ; \zeta=w h
$$

The Von Neumann (Petrovski) condition for stability is \because

$$
\operatorname{Real}(\hat{Q}) \leq \alpha \text { indep. of } w
$$

$\alpha=0$ if no zero order terms.

Note: The Von Neumann condition on the time-step Δt comes in from the specific time-advancement scheme. The eigenvalue condition is more fundamental.

Ex: Euler forward

$$
\begin{gathered}
\hat{u}^{n+1}=\underbrace{(1+\Delta t \hat{Q})}_{\hat{Q}} \hat{u}^{n} \\
|\hat{Q}| \leq 1 \Rightarrow \text { Condition on time-step. } \\
|\Delta t \hat{Q}+1| \leq 0 \Rightarrow \lambda=\frac{\Delta t}{h^{2}} \leq \frac{1}{2}
\end{gathered}
$$

\because Semi-discrete analysis very similar to the continuous analysis for wellposedness.
\because Stability in semi-discrete form \approx well-posedness for the PDE.

2 General semi-discrete formulations

$$
\begin{align*}
& \frac{d}{d t} u_{j}=Q u_{j}+F_{j} \tag{2.25}\\
& u_{j}(0)=f_{j}
\end{align*}
$$

u_{j}, F_{j} and f_{j} vectors, $\mathrm{Q}=$ matrix

Def. The Von Neumaun (Petrovski) condition is satisfied if the eigenvalues of the symbol $\hat{Q}(\zeta)$ satisfy

$$
\begin{equation*}
\operatorname{Re}(z(\zeta, h)) \leq \alpha,|\zeta| \leq \pi \tag{2.26}
\end{equation*}
$$

No terms of order one in Q (zero order terms) then $\alpha=0$.

Theorem: The problem (2.25) is stable in the semi-discrete sense if (2.26) is valid and \hat{Q} can be diagonalised using a similarity transform with bounded condition number.

Proof:

$$
\begin{gathered}
\left(\hat{u}_{w}\right)_{t}=\hat{Q} \hat{u}_{w}+\hat{F} \Rightarrow \\
\hat{u}_{w}(0)=\hat{f}_{w} \\
\frac{d}{d t}\left(e^{-\hat{Q} t} \hat{u}_{w}\right)=e^{-\hat{Q} t} \hat{F} \\
\hat{u}_{w}(t)=e^{\hat{Q} t}[\hat{f}+\underbrace{\left.\int_{0}^{t} e^{-\hat{Q} \zeta} \hat{F} d \zeta\right]}_{\text {Ignore now }} \\
\hat{u}_{w}(t)=e^{\hat{Q} t} \hat{f}=T^{-1} e^{\Lambda t} T \hat{f} \Rightarrow \\
|\hat{u}|^{2} \leq \underbrace{\left|T^{-1}\right|^{2}|T|^{2}}_{=K^{2}} \underbrace{e^{2 \alpha t}}_{\text {VonNeumann }}|\hat{f}|^{2} \leq K^{2} e^{2 \alpha t}|\hat{f}|^{2}
\end{gathered}
$$

Parsevals relation lead to stability.

Forcing function no problem since

$$
\begin{aligned}
& \left|\int_{0}^{t} e^{-\hat{Q}(t-\zeta)} \hat{F} d \zeta\right| \leq K|\hat{F}|_{\max } \underbrace{\left|\int_{0}^{t} e^{\Lambda(t-\zeta)} d \zeta\right|}_{\text {Von Neumann }} \\
& \quad \leq K|\hat{F}|_{\max }\left|\int_{0}^{t} e^{\alpha(t-\zeta)} d \zeta\right| \leq \\
& \leq K|\hat{F}|_{\max } e^{\alpha t}\left[e_{-\alpha}^{-\alpha \zeta}\right]_{0}^{t}=K|\hat{F}|_{\max }\left(\frac{e^{\alpha t}-1}{\alpha}\right)
\end{aligned}
$$

$$
\because|u|_{w}^{2} \leq K^{2} e^{2 \alpha t}|\hat{f}|^{2}+K^{2}|\hat{F}|_{\max }^{2}\left(\frac{e^{\alpha t}-1}{\alpha}\right)
$$

\because Again just as in cont. case.

3 Summary of IVP's

The continous / semi-discrete problem is well-posed / stable if
i) The Petrovski/Von Neumann condition is satisfied. (Eigenvalue condition).
ii) If the "related" matrix $\hat{Q}=T \Lambda T^{-1}$ can be diagonalized with a similarity transform with bounded condition number k, i.e. $|T|\left|T^{-1}\right| \leq K$.

Stability in a semi-discrete form

$$
\approx
$$

Well-posedness for the PDE.

