
Lecture 4

1 Initial Boundary Value Problem ”The Big

Picture”

B.C. ? Where, how many, on what form?

IBV P


ut + P (u, (∂/∂x))u = F (x, t), x ∈ Ω

Lu = g(x, t), x ∈ δΩ
u(x, 0) = f(x), x ∈ Ω

IVP = No Boundaries, Periodic. No second row above.



IBVP ”Roughly Speaking”

P + (L) −→ P̃ Ut + P̃ u = F̃
⇒ (IV P )

F + (g) −→ F̃ u(x, 0) = f

P̃ , F̃ generalized operator, data.
Eigenvalue analysis (shown later) ⇒ P̃ u = (ΛR + iΛI)u

Hyperbolic ΛR ≈ 0 (transport, Euler, Maxwell, b.c.=?)
Parabolic ΛR > 0 (damping, heat, diffusion, b.c. everywhere)
Incompletely Parabolic ΛR ≥ 0 (N-S, mixed systems, b.c.=?)
Well-posed |ΛR| ≤ const. b.c. !!

i) Must choose L such that P + L = P̃ , OK and do not cause explosion. P
often given and OK.

ii) Need to choose L such that we have data Lu-g=0.

iii) i) and ii) often in conflict.

EX:
u = u∞
ux = 0
αu+ βux = u∞
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2 Initial Value Problem + Fourier Expan-

sion. (IVP)

• Continuous + semi discrete ⇒

(ûw)t = P̂ (iw)ûw + F̂ (∗)
ûw(0) = f̂

ûw(t) = eP̂ (iw)tf̂ + eP̂ (iw)t

∫ t

0

e−P̂ (iw)ζF̂ dζ (∗∗)

Knowledge about P̂ (iw)+Parsevals inequality⇒ Well-posedness or Stability

Easy to analyze since:

• P̂ (iw) ”Small” matrix
The Fourier Modes ”decouple the problem”.

• Eigenvalues, eigenvector possible to compute analytically.
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3 Initial Boundary Value Problem (IBVP)

• Continuous: cannot be formulated as an ODE, see (∗) and (∗∗) above.

• Semi-discrete: can be put up as a semi-discrete system.

ut = Au+ F
(∗ ∗ ∗)

u(0) = f

However, the matrix A (corresponding to P̂ (iw)) is not small.

• A is not ”small”.
No ”decoupling”, all grid points included.

• Eigenvalues, eigenvectors almost impossible to compute analytically. Also
b.c. often ”ruin” the structure of A.

• Other methods and techniques are necessary.

4 Different Levels of Approximations

i) Complicated non-linear system of eq’s with initial and b.c.’s Ex: N-S with
Shocks ≈ Impossible to analyze

ii) Simplified problem (model problem) with similar character.
Possible to analyze

iii) Iterate between i) and ii)
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Model Problems
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5 Initial Boundary Value Problems. Semi-

discrete Approximation ”The method of lines”

EX:

d
dt
uj = D0uj, j = 1, ..., N − 1

u0 = 2u1 − u2

uN = g(t)
uj(0) = fj, j = 0, ..., N

(2.28)

Nh=1, Linear extrapolation, as numerical boundary condition, Not physical!!

Various forms of (2.28), possible variants include (2.29)-(2.31), see the book.


du1
dt

= u2−(2u1−u2)
2∆x

= u2−u1
∆x

d
dt
u = Qu+ F

⇒
duN−1

dt
= g−(uN−2)

2h
= −uN−2

∆x
+ g

2h
u(0) = f

 (2.19)

The general form is:

duj
dt

= Quj + Fj, j = 1, ..., N − 1
Bnu = g
uj(0) = fj, j = 0, ..., N

(2.32)

j = 1, ..., N−1, inner points. Bnu = g. Complete set of boundary conditions
(real + numerical).
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Bnu = g include as many conditions that are needed for the ODE system
to have a unique solution. The number of boundary conditions is equal to
the number of linearly independent conditions (No problem with existence!)

The discrete scalar product and norm in analogy with the continuous case
is:
−→ (u, v)h =

∑N−1
j=1 qj < uj, Ĥvj > h, ||u||2 = (u, u)h

qj > 0 and H̃ pos. def. symmetric matrix. Numbering may vary, may in-
clude also boundary points.

Def.: Let Vn be space of grid vector functions v satisfying boundary condi-
tion BnV = 0. The difference operator Q is semi-bounded if for all v ∈ Vn

(v, qv)n ≤ α||v||2n

Example:

d
dt
uj = Duj, j = 0, 1, ..., N − 1

uN(t) = 0
uj(0) = f, j = 0, ..., N

Duj =

{
D+uj j = 0
D0uj j = 1, 2, ..., N − 1

Redefine scalar product as

(u, v)h = δhu0v0 +
N−1∑
j=1

ujvjh = uTPv.
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Then

(u,Qu) = (u,Du) =

δhu0(Du)0+
N−1∑
j=1

uj(
uj+1 − uj−1

2h
)h = δ(u0u1−u2

0)+u1
u2− u0

2
+u2

u3 − u1

2
+...

uN−2(uN−1 − uN − 3) + uN−1(uN − uN−2) = −δu2
0 + u0u1(δ − 1

2
)

= −1

2
u0 if δ =

1

2

∵ Q semi-bounded (SBP trick!!)

Continuous Problem: Semi-boundedness is shown using integration-by-parts

Semi-discrete Problem: Semi-boundedness is shown by summation-by-parts

Definition:
The problem (2.32) is stable if for F=g=0, ||u||h ≤ keαt||f ||h holds. k and α
are constants independent of f and h.

Note that the constants have to be independent of h. The estimate must be
independent of grid.

Theorem: If Q is semi-bounded, then (2.32) is stable.

Note! No problem with existence and number of boundary conditions and
maximal semi-boundedness etc.
Note also!! A non-zero forcing function F is of no problem if ||F || bounded,
see ex (2.29) in book.
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Definition The problem 2.32 is strongly stable if it satisfies

||u||2 ≤ Keαt(||f ||2 +

∫ t

0

(||F ||2 + ||g||2)dt)))

(

∫ T

0

e−ατ (
1

α
||F ||2 + g2)dτ)

K and α are constants independent of F , f , g, h.
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6 Time-stability

The formal stability definitions allow for exponential growth in time for fixed
h, k. (only accurate in the limit)

Boundedness in time is very useful for long-time calculations, we will use the
concept time stable.

Definition in the book

The problem (2.32) is time stable if for F = g = 0, there is a unique solution
satisfying

||u||2h ≤ k||f ||h

k independent of f , h, t.

A better definition

Assume that the PDE for F = g = 0 has the estimate

||u|| ≤ kce
αct||f ||

The difference approximation (2.32) is time-stable if it has the estimate

||u||2h ≤ kde
αdt||f ||h

where αd ≤ αc +O(h).

We will come back to time-stability later once we have developed more the-
ory and skill.
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Ex: Time stability (periodic case)

Continuous:

The PDE is an skew-symmetric form

ut = p(u) = (au)x + a(x)ux, a > 0
u(1, t) = u(0, t)
u(x, 0) = f(x)

(u, pa) = (u, (au)x+aux) =

∫ 1

0

u(au)x+auuxdx = au2|10︸ ︷︷ ︸
=0 periodic

+

∫ 1

0

−auux + auuxdx︸ ︷︷ ︸
=0

≤ 0

∵ P Semi bounded ⇒ d
dt
||u||2 = 0
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Semi discrete

(uj)t = Quj = D0(ajuj) + ajD0uj

xj = jh, j = 0, ..., N, Nh = 1, uj = uj +N?, all j.

(u, v) =
N−1∑
j=0

ujvjh

(u,D0v)h =
1

2

N−1∑
j=0

uj(uj+1 − uj−1) =

=
1

2

N∑
j=1

uj−1vj −
1

2

N−2∑
j=−1

uj+1vj

=
1

2

N−1∑
j=0

uj−1vj −
1

2

N−1∑
j=0

uj+1vj = −1

2

N−1∑
j=0

(uj+1 − uj−1)vj = −(D0u, v)

∵ D0 is skew-symmeric

(u,Qu) = (u,D0(au))︸ ︷︷ ︸
=−(D0u,au)

+(u, aD0u) = 0

d

dt
||u||2h = 0

duj
dt

= Quj time-stable

(a,D0(Au))+(u,AD0u) = −(D0u,Au)+(u,AD0u) = −(D0u)T+Au+uTAD0u = 0
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