Lecture

1 IBVP’s and the energy-method

1.1 The PDE

Ex:
Uy = (aug)y; 0<xz<1; t>0
u(0,t) = 0
ur(1,t) = 0
u(z,0) = f(z)

a=a(x,t) >0 >0.

Define scalar product and norm.

1
wmz/uwamwzmw
0

Energy-method, multiply and integrate =

1 1 1
/ uudr = / u(aug)dr = uaug|y — / au’dzx
0 0 0

d
E|]u||2 = 2autty|; — 2aut,]o —2(Uy, aug) < —28|uy|?
—_— =

=0 =0

Integration yields

t
[l +26 fy [Jus|[*dr < [|f]?



u decays if u, nonzero, typical for parabolic equations, like the heat and
diffusion equations.

The operator p = %a% is semi-bounded, i.e:

(u,pu) <0 (—0]|ua|*)
We will come back to this.

Consider the general Initial Boundary Value problem (2.1)

uy = pu+F; 0<x<1
Bu = g; x=0,1 (2.1)
U = f; 0<x<1

Define new scalar products and norms as

1
(u,0) = / quHvdz, |Jull® = (u,)
0

q(z) >0, H(z) pos. def. Hermitian matrix. (Normally ¢ =1, H = I)



Definition

Let V' be the space of differentiable functions satisfying the homogeneous b.c
BU = 0. The differentiable operator P is semi-bounded if for all u € V,
(u, Pu) < af|ul|* = §||ug||?, @ = constant.

If a solution exists, semi-boundedness guarantee well posedness since

d (6%
P = 2, ) = 2(u, Pu) = [Jul® < |
N—_——

<2aflu||?

Remark: The boundary term must have the correct sign, no way to estimate
lu|%, in term of ||u||. To do that we need

[ulZe < Ollul® + 07" [|uz||*

Existence:
Ut = Uy, 0 S r <1
u(0,t) = 0
u(l,t) = 0
u(x,0) = f(z)

(u, Pu) = 0 *.* semi-bounded operator.
However, the boundary condition at 0 is not correct.



B.C. notcorr.~ | X+t=1
u=f(x,t)

f fla+t) z+t<1
= 0 z+t>1
u(0,t) = f(t) for t < 1, if f not identically zero, u(0,¢) = 0 contradicts that.
*." No existence, must restrict semi-boundedness.

Definition:
P is maximally semi-bounded if it is semi-bounded in V but not semi-bounded
in any space with fewer (minimally) boundary conditions.

In our example V is to too "small” for allowing the existence of solution,
must be made "bigger” by dropping the boundary condition at x=0.

Choose v={u(x,t), u(1,t)=0} = (u, Pu) = —“(OT’W < 0 <— just right.

Choose u={u(x,t)} = V too "large”

u(1,t)? B u(0,t)?
2 2

Maximal semi-boundedness implies well-posedness.

(u, Pu) = not bounded.



Definition:
The IBVP (2.1) is well-posed if for ' = ¢ = 0, i.e there is a unique solution
satisfying

[Jull < ke[| £l

k and « are constants independent of f.

Energy method yields
|ullf = ¢* — u(0)* =

t t
WW+/u@Wﬁ=WW+/f®ﬁ
0 0

Definition:
The IBVP (2.1) is strongly well-posed if there is a unique solution satisfying:

t
\WPSMWWW+AHWW+ﬂW]

k and « are constants independent of F, f, g.

EX: (Number of B.C’s) P=A%



By _

T_lAT f— A =

m:3, 1'22, )\1,)\2 < 0, A3 >0

t 1

Y;
== /2

V3

Vi=5,V0 1+ ¢

X =0 VQZSQV(3)+92

= (VI _ SIVH—i—gI)

X=1: V3=8VD 4 5VO 4gy = (VI =5V 4 gl




V; AV, 0<z<1
) vl = Sivi 44l =0

Vi SHYT 4 gl =1

Vv =

Uy = Au,
BIU — q[
(2) BII’U, — q[[
u = f
weol,
m

B =(m—r)| ]

If transform of (2) gives (1) = strongly well-posed, Need special norm.




1.2 Summary

Consider (2.1)

e A maximally semi-bounded operator leads to well-posedness for homoge-
neous b.c.

e A forcing condition can also be included without problems.

e Strong well-posedness requres further analysis. No general procedure for
energy-method, normal mode analysis required.

e First order hyperbolic problems with correct number of b.c’s are strongly
well-posed.



2 Splitting techniques for the energy-method

Consider an infinite (or periodic) domain (Boundaries can be included and
handled).

Linear

ur + au, = 0; a = a(x,t) (1)

Energy:

/ uugdx + / autydr = 0 = ||ul|? + au®|>, — / au*dr =0

o0 o0 o0

[e.9]

el = [ et < ol Jul?

oo

Semi-bounded, Well-posed

Semi-discrete Q=differential operator

u +AQu =0, Q+ QT =0 skew-symmetric.
Energy: Let I = uTu,Az + vl AQuAz =0 =

2ulu Az +yT(AQ + (AQ)T)% =0

g

[Jul]? o0 )
£-9 a,u dx

o0

Split op. using all combinations = Back to the PDE!

au, = alau), + fau, + yazu = aug(a+ B) + au(a +v) =

l=a+p B=1—-a
= =
O=a+7vy v =—«



au, = alau), + (1 — a)au, — aazu

/ uuydx +/ u(a(au), + (1 — a)au, — auzu)dr =0

o0 —00

1 o0 oo

§Hu||t2 —|—/ au(au), + (1 — a)auu, = / aazu’ds
1 2 oo - * 2
§||u\|t + auaul™, + —(1 — 20)auu,de = aazudr

— —00 —00
=0 ~ ~~
=0 if a:%

el = [ aata
(Which we already know)

Semi-discrete

1 1 1
—Q(A —AQu — -Au =
ug + 2@( u) + 5 Qu 5 Astt 0

2uu Ax 4 (W' QAu + v AQu)Ar = u” AjuAx
=—u' QT Au+ T ATQu
= — (Qu)" (Au) + (Au)" Qu

=0
ul)? = u” Ayulz ~ / au's - OK

—00

Non-linear

u + uuy, =0
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u2

2)95:0

Ut—i—(
U2

/ uuydz +/ Buu, +(1 — ﬁ)u(%)mdx =0
- T s |~ [ B(u?)uda

1 oe 1—
Sl + [ ut)s (-5 + =52 de =0
——

=0 if p=}

1 1
U+ Ul + g(ug)x = 0 Appropriate!

Semi-discrete: )
U = diag(u;)

1 1 -
ulu Az + %(UTUQU +u"QUu)Ax =0

—uTQTUQ

(.

(Uu)TQut(Qu)TUu
=0

Jull; =0

3 Matrix properties

Linear:

1 1
u+ = (QA+AQu—  -Au =0
22— 2

Q(u) symmetric part
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Non-linear:

U + é(@u +u@Q)u =0

Q(u)
Q+O~QA+AQ+(QA)+(AQ)T = QA+AQ+AQT +QTA = QA+AQ—AQ—QA =0

See JSC vol 29, No3 2006, Conservative finite ... J. Nordstrom
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