Lecture 5

1 IBVP's and the energy-method

1.1 The PDE

 $\underline{\mathbf{E}}\mathbf{x}$:

$$u_t = (au_x)_x; \quad 0 \le x \le 1; \quad t \ge 0$$

 $u(0,t) = 0$
 $u_x(1,t) = 0$
 $u(x,0) = f(x)$

$$a = a(x, t) \ge \delta > 0.$$

Define scalar product and norm.

$$(u,v) = \int_0^1 uv dx, \ ||u||^2 = (u,v)$$

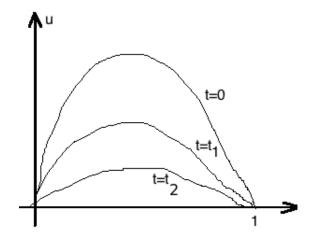
Energy-method, multiply and integrate \Rightarrow

$$\int_0^1 u u_t dx = \int_0^1 u(au_x)_x dx = u a u_x \Big|_0^1 - \int_0^1 a u_x^2 dx$$

$$\frac{d}{dt} ||u||^2 = \underbrace{2au u_x|_1}_{=0} - \underbrace{2au u_x|_0}_{=0} - 2(u_x, au_x) \le -2\delta ||u_x||^2$$

Integration yields

$$||u||^2 + 2\delta \int_0^t ||u_x||^2 d\tau \le ||f||^2$$



u decays if u_x nonzero, typical for parabolic equations, like the heat and diffusion equations.

The operator $p = \frac{\partial}{\partial x} a \frac{\partial}{\partial x}$ is <u>semi-bounded</u>, i.e:

$$(u, pu) \le 0 \qquad (-\delta ||u_x||^2)$$

We will come back to this.

Consider the general Initial Boundary Value problem (2.1)

$$u_t = pu + F; \quad 0 \le x \le 1$$

 $Bu = g; \quad x = 0, 1$
 $u = f; \quad 0 \le x \le 1$ (2.1)

Define new scalar products and norms as

$$(u,v) = \int_0^1 quHvdx, \ ||u||^2 = (u,u)$$

q(x)>0 , H(x) pos. def. Hermitian matrix. (Normally $q=1,\,H=I)$

Definition

Let V be the space of differentiable functions satisfying the homogeneous b.c BU = 0. The differentiable operator P is semi-bounded if for all $u \in V$, $(u, Pu) \le \alpha ||u||^2 - \delta ||u_x||^2$, $\alpha = \text{constant}$.

If a solution exists, semi-boundedness guarantee well posedness since

$$\frac{d}{dt}||u||^2 = 2(u, u_t) = \underbrace{2(u, Pu)}_{\leq 2\alpha ||u||^2} \Rightarrow ||u||^2 \leq e^{2\alpha t}||f||^2$$

Remark: The boundary term must have the correct sign, no way to estimate $|u|_{\infty}^2$ in term of ||u||. To do that we need

$$|u|_{\infty}^{2} \leq \theta ||u||^{2} + \theta^{-1} ||u_{x}||^{2}$$

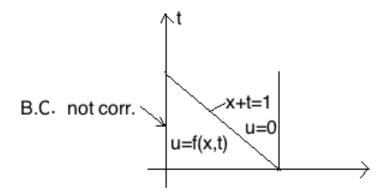
Existence:

$$u_t = u_x; \quad 0 \le x \le 1$$

 $u(0,t) = 0$
 $u(1,t) = 0$
 $u(x,0) = f(x)$

(u, Pu) = 0 : semi-bounded operator.

However, the boundary condition at 0 is not correct.



$$u = \begin{cases} f(x+t) & x+t \le 1\\ 0 & x+t > 1 \end{cases}$$

u(0,t) = f(t) for $t \le 1$, if f not identically zero, u(0,t) = 0 contradicts that. \therefore No existence, must restrict semi-boundedness.

Definition:

P is <u>maximally semi-bounded</u> if it is semi-bounded in V but not semi-bounded in any space with fewer (minimally) boundary conditions.

In our example V is to too "small" for allowing the existence of solution, must be made "bigger" by dropping the boundary condition at x=0.

Choose v={u(x,t), u(1,t)=0}
$$\Rightarrow$$
 (u, Pu) = $-\frac{u(0,t)^2}{2} \leq 0 \leftarrow$ just right.

Choose u={u(x,t)} \Rightarrow V too "large"

$$(u, Pu) = \frac{u(1,t)^2}{2} - \frac{u(0,t)^2}{2}$$
 not bounded.

Maximal semi-boundedness implies well-posedness.

Definition:

The IBVP (2.1) is well-posed if for F = q = 0, i.e there is a unique solution satisfying

$$||u|| \le ke^{\alpha t}||f||$$

k and α are constants independent of f.

 $\mathbf{E}\mathbf{x}$:

$$u_t = u_x$$

$$u(1,1) = g(t)$$

$$u(x,0) = f(x)$$

Energy method yields

$$||u||_t^2 = g^2 - u(0)^2 \Rightarrow$$

$$||u||^2 + \int_0^t u(0,t)^2 dt = ||f||^2 + \int_0^t g^2(t) dt$$

Definition:

The IBVP (2.1) is strongly well-posed if there is a unique solution satisfying:

$$||u||^2 \le ke^{\alpha t}[||f||^2 + \int_0^t [||F||^2 + g^2]d\tau]$$

k and α are constants independent of F, f, g.

$$\underline{\mathbf{EX}}$$
: (Number of B.C's) $P = A \frac{\partial}{\partial x}$

$$u_t = Au_x; \ 0 \le x \le 1$$

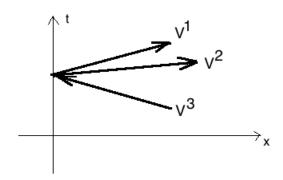
$$T^{-1}AT = \Lambda = \begin{bmatrix} \lambda_1 & & & & & \\ & \ddots & & & & \\ & & \lambda_r & & & \\ & & & \lambda_{r+1} & & \\ & & & & \ddots & \\ & & & & \lambda_m \end{bmatrix}$$

$$V = T^{-1}u = \left(\begin{array}{c} V^I \\ V^{II} \end{array}\right) \Rightarrow$$

$$V_t^j = \lambda_j V_x$$

 $\underline{\mathbf{E}}\mathbf{x}$

m=3; r=2,
$$\lambda_1, \lambda_2 < 0, \ \lambda_3 > 0$$



$$X = 0: V^1 = S_1 V^{(3)} + g_1 V^2 = S_2 V^{(3)} + g_2 \Rightarrow (V^I = S^I V^{II} + g^I)$$

$$X=1:\ V^3=S_3V^{(1)}+S_4V^{(2)}+g_3\ \Rightarrow (V^{II}=S^{II}V^I+g^{II})$$

$$\Rightarrow$$

$$(1) \begin{cases} V_t &= \Lambda V_x; & 0 \le x \le 1 \\ V^I &= S^I V^{II} + g^I, & x = 0 \\ V^{II} &= S^{II} V^I + g^{II}, & x = 1 \\ \mathcal{V} &= \tilde{f} \end{cases}$$

$$S^I = \left[\begin{array}{c} \cdot \\ \cdot \end{array} \right] \bigg\} r$$

$$S^{II} = [\ . \ . \] \}m - r$$

$$(2) \begin{cases} u_t &= Au_x \\ B^I u &= \tilde{q}^I \\ B^{II} u &= \tilde{q}^{II} \\ u &= \tilde{f} \end{cases}$$

$$B^I = r \left[\begin{array}{cc} & \\ & \end{array} \right]$$

$$B^{II} = (m-r) \begin{bmatrix} & & \\ & & \end{bmatrix}$$

If transform of (2) gives $(1) \Rightarrow$ strongly well-posed, Need special norm.

1.2 Summary

Consider (2.1)

- \bullet A <u>maximally semi-bounded operator</u> leads to <u>well-posedness</u> for homogeneous b.c.
- A forcing condition can also be included without problems.
- Strong well-posedness requires further analysis. No general procedure for energy-method, normal mode analysis required.
- \bullet First order hyperbolic problems with correct number of b.c's are strongly well-posed.

2 Splitting techniques for the energy-method

Consider an infinite (or periodic) domain (Boundaries can be included and handled).

Linear

$$u_t + au_x = 0; \ a = a(x,t) \tag{1}$$

Energy:

$$\int_{-\infty}^{\infty} uu_t dx + \int_{-\infty}^{\infty} auu_x dx = 0 \Rightarrow ||u||_t^2 + au^2|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} a_x u^2 dx = 0$$
$$\therefore ||u||_t^2 = \int_{-\infty}^{\infty} a_x u^2 dx \le |a|_x ||u||^2$$

Semi-bounded, Well-posed

Semi-discrete Q=differential operator

$$u_t + AQu = 0$$
, $Q + Q^T = 0$ skew-symmetric.

Energy: Let $I = u^T u_t \Delta x + u^T A Q u \Delta x = 0 \Rightarrow$

$$\underbrace{2u^T u_t \Delta x}_{||u||_t^2} + \underbrace{u^T (AQ + (AQ)^T) u}_{\neq -2 \int_{-\infty}^{\infty} a_x u^2 dx} = 0$$

Split op. using all combinations \Rightarrow Back to the PDE!

$$au_{x} = \alpha(au)_{x} + \beta au_{x} + \gamma a_{x}u = au_{x}(\alpha + \beta) + a_{x}u(\alpha + \gamma) \Rightarrow$$

$$1 = \alpha + \beta \qquad \beta = 1 - \alpha$$

$$\Rightarrow \qquad \Rightarrow$$

$$0 = \alpha + \gamma \qquad \gamma = -\alpha$$

$$au_{x} = \alpha(au)_{x} + (1 - \alpha)au_{x} - \alpha a_{x}u$$

$$\int_{-\infty}^{\infty} uu_{t}dx + \int_{-\infty}^{\infty} u(\alpha(au)_{x} + (1 - \alpha)au_{x} - \alpha u_{x}u)dx = 0$$

$$\frac{1}{2}||u||_{t}^{2} + \int_{-\infty}^{\infty} \alpha u(au)_{x} + (1 - \alpha)auu_{x} = \int_{-\infty}^{\infty} \alpha a_{x}u^{2}dx$$

$$\frac{1}{2}||u||_{t}^{2} + \underbrace{\alpha uau|_{-\infty}^{\infty}}_{=0} + \underbrace{\int_{-\infty}^{\infty} -(1 - 2\alpha)auu_{x}dx}_{=0 \text{ if } \alpha = \frac{1}{2}}$$

$$\therefore ||u||_{t}^{2} = \int_{-\infty}^{\infty} a_{x}u^{d}x$$

(Which we already know)

Semi-discrete

$$u_t + \frac{1}{2}Q(Au) + \frac{1}{2}AQu - \frac{1}{2}A_xu = 0$$

$$2u^T u_t \Delta x + (u^T Q A u + u^T A Q u) \Delta x = u^T A_x u \Delta x$$

$$= -u^T Q^T A u + u^T A^T Q u$$

$$= -(Qu)^T (Au) + (Au)^T Q u$$

$$= 0$$

$$||u||_t^2 = u^T A_x u \Delta x \sim \int_{-\infty}^{\infty} a_x u^d x : OK$$

Non-linear

$$u_t + uu_x = 0$$

$$u_{t} + (\frac{u^{2}}{2})x = 0$$

$$u_{t} + \beta u u_{x} + (1 - \beta)(\frac{u^{2}}{2})_{x} = 0$$

$$\int_{-\infty}^{\infty} u u_{t} dx + \int_{-\infty}^{\infty} \underbrace{\beta u^{2} u_{x}}_{\beta u^{3}|_{-\infty}^{\infty} - \int \beta (u^{2})_{x} u dx} + (1 - \beta)u(\frac{u^{2}}{2})_{x} dx = 0$$

$$\frac{1}{2}||u||_{t}^{2} + \int_{-\infty}^{\infty} u(u^{2})_{x} \underbrace{(-\beta + \frac{1 - \beta}{2})}_{=0 \text{ if } \beta = \frac{1}{3}} dx = 0$$

$$u_{t} + \frac{1}{3}u u_{x} + \frac{1}{3}(u^{2})_{x} = 0 \text{ Appropriate!}$$

Semi-discrete:

$$\bar{U} = diag(u_i)$$

$$u_t + \frac{1}{3}\bar{U}Qu + \frac{1}{3}Q(\bar{U}u) = 0$$

$$u^T u_t \Delta x + \frac{1}{3}(u^T\bar{U}Qu + u^TQ\bar{U}u)\Delta x = 0$$

$$\underbrace{-u^TQ^T\bar{U}u}_{(\bar{U}u)^TQu - (Qu)^T\bar{U}u}$$

$$= 0$$

$$||u||_t^2 = 0$$

3 Matrix properties

Linear:

$$u_t + \frac{1}{2} \underbrace{(QA + AQ)}_{\bar{Q}(u)} u - \underbrace{\frac{1}{2} A_x u}_{symmetric\ part} = 0$$

Non-linear:

$$u_t + \frac{1}{3}(Qu + uQ)u = 0$$

$$\bar{Q}(u)$$

$$\bar{Q} + \bar{Q}^{=}QA + AQ + (QA)^T + (AQ)^T = QA + AQ + AQ^T + Q^TA = QA + AQ - AQ - QA = 0$$

See JSC vol 29, No
3 2006, Conservative finite ... J. Nordström