Lecture 6

1 Stability for method of lines

$$
\begin{array}{ll}
u_{t}+A u & =0 \\
u(0) & =f \tag{1}
\end{array}
$$

Solution

$$
\begin{equation*}
u=e^{-A t} f \tag{2}
\end{equation*}
$$

$\underline{\text { Eigenvalues }}$

$$
\left.\begin{array}{c}
A X=X \Lambda ; A=X \Lambda X^{-1} \Rightarrow \\
u=\left(I-A t+(A t)^{2} / 2+\ldots\right) f= \\
X\left(I-\Lambda t+(\Lambda t)^{2} / 2+\ldots\right) X^{-1} f= \\
X e^{-\Lambda t} X^{-1} f \Rightarrow X^{-1} u=e^{-\Lambda t} X^{-1} f \\
V(t)=e^{-\Lambda t} V(0) \\
e^{-\Lambda t}=\left[\begin{array}{c}
e^{-\lambda t} \\
e^{-\lambda_{2} t} \\
\ddots
\end{array}\right. \\
e^{-\lambda_{n} t}
\end{array}\right]
$$

Well-posed/stable if all eigenvalues and eigenvectors OK, $\operatorname{Re}\left(\lambda_{i}\right) \geq 0$ or for bounded growth $\operatorname{Re} \lambda \geq-\alpha, \alpha=$ const.

+ Eigenvalue analysis is very percise.
- Technology very difficult. (GKS, Normal Mode, Laplace)

Energy

$$
\begin{gathered}
u^{T} P u_{t}+u^{T} P A u=0, P>0 \\
\frac{1}{2}\left(\|u\|_{P}^{2}\right)_{t}+u^{T} \underbrace{\frac{\left.P A+(P A)^{T}\right)}{2}}_{\tilde{A}} u=0
\end{gathered}
$$

Well-posed/stable if \tilde{A} positive semi-definite.

+ Technically easy. (Skew-symmetric part is gone)
- Not precise, could be stable anyway.

Example:

Eigenvalues

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & \Theta \\
0 & 2
\end{array}\right], \quad \Lambda=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \\
\lambda=1 \Rightarrow\left[\begin{array}{ll}
0 & \Theta \\
0 & 1
\end{array}\right] \quad x=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\lambda=2 \Rightarrow-x_{1}+\Theta x_{2}=0, \quad x_{1}=\Theta x_{2} \\
\underset{\sim}{x}=\left[\begin{array}{c}
\Theta \\
1
\end{array}\right] \frac{1}{\sqrt{1+\Theta^{2}}}, \quad \bar{X}=\left[\begin{array}{ll}
1 & \frac{\Theta}{\sqrt{1+\Theta^{2}}} \\
0 & \frac{1}{\sqrt{1+\Theta^{2}}}
\end{array}\right]|x| \neq 0
\end{gathered}
$$

\because All OK and stable.
Energy

$$
\begin{gathered}
u^{T} u_{t}+u^{T} A u=0 \Rightarrow \frac{1}{2}\|u\|_{t}^{2}+u^{T} \underbrace{\frac{\left(A+A^{T}\right)}{2}}_{\tilde{A}} u=0 \\
\tilde{A}=\left[\begin{array}{ll}
1 & \frac{\Theta}{2} \\
\frac{\Theta}{2} & 2
\end{array}\right]
\end{gathered}
$$

Eigenvalues of \tilde{A} ?

$$
\begin{gathered}
(1-\lambda)(2-\lambda)-\left(\frac{\Theta}{2}\right)^{2}=0 \Rightarrow \lambda^{2}-(1+2) \lambda+2-\frac{\Theta^{2}}{2}=0 \Rightarrow \\
\lambda=\frac{3}{2} \pm \sqrt{\left(\frac{3}{2}\right)^{2}-\left(2-\left(\frac{\Theta}{2}\right)^{2}\right)}
\end{gathered}
$$

Stable if $2-\left(\frac{\Theta}{2}\right)^{2} \geq 0 \Rightarrow$

$$
\left(\frac{\Theta}{2}\right)^{2} \leq 2 \Rightarrow \Theta^{2} \leq 8 \quad \because|\Theta| \leq \sqrt{8}
$$

\because Energy-estimate if $|\Theta| \leq \sqrt{8}$
\because But stable anyway. (Normal mode, GKS)
\because Energy-estimates are conservative.

Can we choose P to fix this?

A simple P is $P=\left[\begin{array}{ll}\alpha & 0 \\ 0 & \gamma\end{array}\right]$

$$
\begin{aligned}
P A= & {\left[\begin{array}{ll}
\alpha & 0 \\
0 & \gamma
\end{array}\right]\left[\begin{array}{ll}
1 & \Theta \\
0 & 2
\end{array}\right]=\left[\begin{array}{cc}
\alpha & \alpha \Theta \\
0 & 2 \gamma
\end{array}\right] } \\
& P A+(P A)^{T}=\left[\begin{array}{ll}
\alpha & \frac{\alpha \Theta}{2} \\
\frac{\alpha \Theta}{2} & 2 \gamma
\end{array}\right] \\
& (\alpha-\lambda)(2 \gamma-\lambda)-\left(\frac{\alpha \Theta}{2}\right)^{2}=0
\end{aligned}
$$

$$
\begin{gathered}
\lambda^{2}-(\alpha+2 \gamma) \lambda+2 \alpha \gamma-\left(\frac{\alpha \Theta}{2}\right)^{2}=0 \\
\alpha+2 \gamma>0, \quad 2 \gamma \alpha-\frac{\alpha^{2} \Theta^{2}}{2} \geq 0 \Rightarrow \\
\alpha^{2} \Theta^{2} \leq 8 \alpha \gamma \Rightarrow \Theta^{2} \leq 8 \frac{\gamma}{\alpha}
\end{gathered}
$$

\because if $\frac{\gamma}{\alpha} \gg 1 \Rightarrow$ non-existant instability effectively removed.
\because Make sure to look for stability in the right norm.

