Exercises III

1. Find the most general boundary conditions for the hyperbolic system

$$
u_{t}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] u_{x}, \quad 0 \leq x \leq 1, t \geq 0
$$

by diagonalizing the system and then transforming back.
2. Let the scalar product and norm be defined by

$$
(u, v)_{r, s}=\sum_{j=r}^{s} u_{j} v_{j} h, \quad\|u\|_{r, s}^{2}=(u, u)_{r, s}
$$

and use the notation $\left.u_{j}\right|_{r} ^{s}=u_{s}-u_{r}$. Prove the equalities

$$
\begin{aligned}
\left(u, D_{+} v\right)_{r, s} & =-\left(D_{-} u, v\right)_{r+1, s+1}+\left.u_{j} v_{j}\right|_{r} ^{s+1} \\
& =-\left(D_{+} u, v\right)_{r, s}-h\left(D_{+} u, D_{+} v\right)_{r, s}+\left.u_{j} v_{j}\right|_{r} ^{s+1}, \\
\left(u, D_{0} v\right)_{r, s} & =-\left(D_{0} u, v\right)_{r, s}+\frac{1}{2}\left(u_{j} v_{j+1}+u_{j+1} v_{j}\right)_{r-1}^{s} .
\end{aligned}
$$

3. Find the stability condition in the form $\lambda=k / h \leq \lambda_{0}$ for the approximation

$$
\begin{align*}
u_{j}^{n+1} & =\left(I+k D_{+}\right) u_{j}^{n}, \quad j=0,1, \ldots, N-1, \\
u_{N}^{n} & =g^{n}, \tag{1}\\
u_{j}^{0} & =f
\end{align*}
$$

by using the energy method $\left(g^{n}=0\right)$. Is λ_{0} the same constant as the one obtained from the von Neumann condition?
4. Prove that the solution to (1) satisfies

$$
\left\|u^{n}\right\|_{0, N-1} \leq\|f\|_{0, N-1}^{2}+\sum_{\nu=0}^{n-1}\left|g^{n}\right|^{2} k
$$

5. Use the energy method to prove that

$$
\begin{aligned}
(I-k Q) u_{j}^{n+1} & =u_{j}^{n}, \quad j=0,1, \ldots, N-1, \\
u_{N}^{n} & =g^{n}, \\
u_{j}^{0} & =f
\end{aligned}
$$

is unconditionally stable if

$$
Q u_{j}= \begin{cases}D_{0} u_{j}, & j=1,2, \ldots, N-1 \\ D_{+} u_{j}, & j=0\end{cases}
$$

