MAI0106: Numerical Methods for Initial Boundary Value Problems

Why should I take this course?

- It provides advanced knowledge of the numerical treatment of Initial Boundary Value Problems (IBVP's).
- The ambitious student will reach a research level in scientific computing related to IBVP's
- The ambitious student will be able to assess the validity of other researchers computational efforts related to IBVP's.
- Application oriented students using IBVP's will be able to distinguish between numerical errors and physical events.

Aim

To provide advanced knowledge in analysis and methodology for initial boundary value problems (IBVP's). The focus is on the underlying principles and theoretical understanding of the techniques.

Content

Fundamental properties for initial boundary value problems (IBVP's). The concepts of well-posedness for the IBVP. The crucial role of boundary conditions. Effects of unceartainty in data for the IBVP. Fundamental properties for numerical methods applied to the IBVP: concistency, convergence, stability, efficiency. Methods for analysis of finite difference schemes for IBVP's. Higher order approximations. Methods for complex geometries: multi-block methods, unstructured finite volume methods, discontinuous Galerkin methods.

Details

Time: Start 10th of November 13.15-15.00 in in R42, C-building, 18 Lectures, 2-3 times a week.

Lecturer: Jan Nordström, MAI, http://www.mai.liu.se/janno11/

Instruction: Lectures and compulsory assignments.

Examination: There will be 6 mandatory problems to be done as home work. No exam in class.

Course homepage: http://www.mai.liu.se/janno11/kurser/MAI0106/

Literature: Bertil Gustafsson: High order difference methods for time-dependent PDE. ISBN 978-3-540-74992-9 e-ISBN 978-3-540-74993-6 DOI 10.1007/978-3-540-74993-6 Springer Series in Computational Mathematics ISSN 0179-3632. © 2008 Springer-Verlag Berlin Heidelberg.