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Overview

• Material: Notes + JNO + GUS + GKO + HANDOUTS.

• Homepage http://courses.mai.liu.se/FU/MAI0122/

• Notes at http://courses.mai.liu.se/FU/MAI0122/Lecture/

• Schedule: 6 lectures + 3 exercises + 3 seminars.

• Examination: 3 seminar presentations + 3 homeworks.

• Credit 3 points, European/Bologna system.

• Email: jan.nordstrom@liu.se



Schedule

Times Tuesday Wednesday Thursday Friday

09:30-10:00 Seminar 1 Seminar 2 Seminar 3
10:00-10:15 Coffee/Tea Coffee/Tea Coffee/Tea
10:15-12:00 Lecture 1 Lecture 3 Lecture 5 Closure
12:00-13:15 Lunch Lunch Lunch Lunch
13:15-15:00 Lecture 2 Lecture 4 Lecture 6
15:00-15:15 Coffee/Tea Coffee/Tea Coffee/Tea
15:15-16:30 Exercise 1 Exercise 2 Exercise 3

Seminar preparation during exercises.



General structure and principles
“The Big Picture”

• Relate the PDE to the numerical approximation.

• Semi-discrete approximation in space, time is left
continuous (until last lecture).

• Linear problems and smooth nonlinear problems.

• All approximations of the form: Ut + AU = F.

• What can we say about A based on knowledge of A + AT ?

• High order finite differences, the SBP-SAT technique.

• Extension to techniques for more complex geometries:
multi-block, finite volume + dG techniques.



Course material

• Slides + possible additional handouts+references to
relevant articles.

• JNO: A Roadmap to Well Posed and Stable Problems in
Computational Physics, J. Nordström, Journal of Scientific
Computing, Volume 71, Issue 1, pp. 365-385, 2017.

• GUS: High Order Difference Methods for Time Dependent
PDE, Bertil Gustafsson, Springer-Verlag 2008.

• GKO: Time Dependent Problems and Difference Methods,
Bertil Gustafsson, Heinz-Otto Kreiss, Joseph Oliger, John
Wiley & Sons, 1995.



Lecture 1



Well posed problems

Ut + PU = F(x, t), x ∈ Ω, t ≥ 0 (1a)
BU = g(x, t) x ∈ δΩ, t ≥ 0 (1b)

u = f (x) x ∈ Ω, t = 0 (1c)

U = dependent variable
P = differential operator in space
B = boundary operator

data


F = forcing function
g = boundary data
f = initial data



Equation (1) is Well-Posed if U exists and satisfies

||U||2I ≤ K
(
||f ||2II + ||F||2III + ||g||2IV

)
. (2)

K independent of data F, f , g. A small K is good !

Why is (2) important? Consider the perturbed problem

Vt = PV + F + δF, x ∈ Ω, t ≥ 0 (3a)
BV = g + δg x ∈ Ω, t ≥ 0 (3b)

V = f + δf x ∈ Ω, t = 0. (3c)



(3)-(1)⇒W = V −U, P = linear operator.

Wt + PW = δF, x ∈ Ω, t ≥ 0 (4a)
BW = δg x ∈ Ω, t ≥ 0 (4b)

W = δf x ∈ Ω, t = 0. (4c)

Apply (2) to (4)⇒

||W||2I ≤ K
(
||δf ||2II + ||δF||2III + ||δg||2IV

)
. (5)

∴W = V −U small if K, δf , δF, δg small!

Uniqueness follows directly from (5).



Figure: A good numerical approximation possible. Choice of
numerical method next step.

Figure: A good numerical approximation NOT possible. Change
problem, in practice boundary conditions



Existence

ux = 0 u = constant
u(0) = a
u(1) = b a , b ⇒ too many b.c.’s !

Uniqueness

uxx = 0 u = c1 + c2x
u(0) = a u = a + c2x ⇒ too few b.c.’s !

Boundedness

u = a + c2x no bound⇒ too few b.c.’s !



Example

ut = −ux, x ≥ 0, t ≥ 0
Bu = g, x = 0, t ≥ 0

u(x, 0) = 0, x ≥ 0, t = 0

P = − ∂
∂x ,B = 1 + β ∂∂x

Laplace⇒ sû + ûx = 0⇒ û = c1e−sx

i) β = 0, c1 = q̂⇒ û = q̂e−sx, Well posed

ii) β , 0 c1(1 − βs) = q̂⇒ û =
q̂

1−βs e−sx, Ill posed



Nonlinear problems
(see Kreiss and Lorenz 1989)

• Linearization principle: A non-linear problem is
well-posed at u if the linear problem obtained by
linearizing all the functions near u are well-posed.

• Localization principle: If all frozen coefficient problems are
well-posed, then the linear problem is also well-posed.

Ut + UUx = 0, Nonlinear
Ut + Ū(x, t)Ux = 0, Linear

Ut + ŪUx = 0, Frozen coefficients

Note: Principles valid if no shocks present.



Summary of well-posedness

A problem is well-posed if

• A solution exists (correct number of b.c.)
• The solution is bounded by the data (correct form of b.c.).

• The solution is unique (follows from bound).

A nonlinear problem is related to well-posedness through the
Linearization and Localization principles .

If a problem is not well-posed, do NOT discretize. Modify first
to get well-posedness. In practice, change b.c.!



Initial value problems for periodic solutions using
Fourier transforms

Consider the Cauchy problem on −∞ ≤ x ≤ ∞

Ut = P(∂/∂x)U + F (6a)
U(x, 0) = f (x). (6a)

Definition: The problem (10) is well-posed if there is a unique
solution satisfying

||u||2 ≤ k2e2αt
(
||f ||2 +

∫ t

0
||F||2dt

)
, (7)

where k, α are bounded constants.



As an example, consider

Ut + AUx = BUxx

where A,B = constant and symmetric. Fourier transform⇒

P̂(iω) = −(iωA + ω2B),

Ût = P̂(iω)Û, Û(0) = f̂ , ⇒ Û = eP̂(iω)t f̂

Theorem (6) is well-posed if there are constants k, α such that

|eP̂(iω)t
| ≤ keαt. (8)

Proof:

||U||2 =
1
√

2π

∞∑
−∞

|Û|2 ≤ max(|eP̂(iω)t
|
2)

1
√

2π

∞∑
−∞

|f̂ |2 ≤ k2e2αt
||f ||2.



Definition: The Petrovski condition is satisfied if the
eigenvalues λ(ω) of P̂(iω) satisfy

Re(λ(ω)) ≤ α. (9)

α = constant, independent of ω, α = 0 if no zero order terms.

Theorem: The Petrovski condition is necessary for
well-posedness. It is sufficient if there is a constant K and
matrix T such that T−1P̂T = diagonal and ||T−1

||||T|| ≤ K for all ω.

Proof: The Petrovski condition leads to the estimate (8).



Periodic difference approximations

d
dt

Uj = QUj + Fj (10a)

Uj(0) = fj (10b)

where Uj,Fj, fj are vectors and Q is a matrix.

Definiition: The Petrovski condition is satisfied if the
eigenvalues of the symbol Q̂(ξ) satisfy

Re(λ(ξ, h)) ≤ α, (11)

where |ξ| = |ωh| < π.



Theorem: The problem (10) is stable in the semi-discrete sense if
(11) is valid and Q̂ can be diagonalized using a similarity
transform with a bounded condition number.

Note similarity with PDE, the proofs are the same.

As an example, consider the heat equation.

d
dt

Uj = QUj =
Uj+1 − 2Uj + Uj−1

h2

Uj = fj.

Expand in Fourier-series

Uj =
1
√

2π

∞∑
−∞

Ûωeiωxj .



The problem separates into

d
dt

Ûω = Q̂Ûω Ûw = f̂ω ⇒ Ûω = eQ̂t f̂ω.

∴ Exactly as in continuous case.

Let ωh = ξ. We have Q = D+D− ⇒

Qeiωxj =
eiωxj+1 − 2eiωxj + eiωxj−1

h2

= eiωxj
(eiξ
− 2 + e−iξ)

h2 = eiωxj
(eiξ/2

− e−iξ/2)
h2

= eiωxj

(
−4

sin (ξ/2)2

h2

)
= eiωxjQ̂.



• The Von Neumann condition on the time-step comes from
the specific time-advancement scheme.

• The Petrovski, eigenvalue condition is more general, and
fundamental.

Example of Von Neumann condition using Euler forward:

Ûn+1 = (1 + ∆tQ̂)Ûn

= ˜̂QÛn

|
˜̂Q| ≤ 1,⇒ condition on time-step.



Summary of theory for initial value problems

The continuous/semi-discrete problem is well-posed/stable if

• The Petrovski (Von Neumann) condition is satisfied.

• Q̂ = TΛT−1 can be diagonalized and ||T−1
||||T|| ≤ K.

∴ Stability in semi-discrete form ≈well-posedness for PDE.



Exercises/Seminars

• Discuss the difference between the Petrovski and Von
Neumann condition.

• Discuss the use of energy-methods for periodic problems.
• Prove that the two bullets on previous slide lead to

well-posedness and stability.
• Prove that no positive real parts in eigenvalues of A if

A + A∗ ≥ 0.


