Numerical Solution of Initial Boundary Value Problems

Jan Nordström
Division of Computational Mathematics
Department of Mathematics

Linköping University

Overview

- Material: Notes + JNO + GUS + GKO + HANDOUTS.
- Homepage http://courses.mai.liu.se/FU/MAI0122/
- Notes at http://courses.mai.liu.se/FU/MAI0122/Lecture/
- Schedule: 6 lectures +3 exercises +3 seminars.
- Examination: 3 seminar presentations +3 homeworks.
- Credit 3 points, European/Bologna system.
- Email: jan.nordstrom@liu.se

Schedule

Times	Tuesday	Wednesday	Thursday	Friday
09:30-10:00		Seminar 1	Seminar 2	Seminar 3
10:00-10:15		Coffee/Tea	Coffee/Tea	Coffee/Tea
10:15-12:00	Lecture 1	Lecture 3	Lecture 5	Closure
12:00-13:15	Lunch	Lunch	Lunch	Lunch
13:15-15:00	Lecture 2	Lecture 4	Lecture 6	
15:00-15:15	Coffee/Tea	Coffee/Tea	Coffee/Tea	
15:15-16:30	Exercise 1	Exercise 2	Exercise 3	

Seminar preparation during exercises.

General structure and principles

"The Big Picture"

- Relate the PDE to the numerical approximation.
- Semi-discrete approximation in space, time is left continuous (until last lecture).
- Linear problems and smooth nonlinear problems.
- All approximations of the form: $U_{t}+A U=F$.
- What can we say about A based on knowledge of $A+A^{T}$?
- High order finite differences, the SBP-SAT technique.
- Extension to techniques for more complex geometries: multi-block, finite volume +dG techniques.

Course material

- Slides + possible additional handouts+references to relevant articles.
- JNO: A Roadmap to Well Posed and Stable Problems in Computational Physics, J. Nordström, Journal of Scientific Computing, Volume 71, Issue 1, pp. 365-385, 2017.
- GUS: High Order Difference Methods for Time Dependent PDE, Bertil Gustafsson, Springer-Verlag 2008.
- GKO: Time Dependent Problems and Difference Methods, Bertil Gustafsson, Heinz-Otto Kreiss, Joseph Oliger, John Wiley \& Sons, 1995.

Lecture 1

Well posed problems

$$
\left.\left.\begin{array}{rl}
U_{t}+P U & =F(x, t), \quad x \in \Omega, t \geq 0 \\
B U & =g(x, t) \quad x \in \delta \Omega, t \geq 0 \\
u & =f(x) \quad x \in \Omega, t=0
\end{array}\right\} \begin{array}{l}
U=\text { dependent variable } \tag{1c}\\
P=\text { differential operator in space } \\
B
\end{array}\right)=\text { boundary operator } \begin{aligned}
& \text { data }\left\{\begin{array}{l}
F=\text { forcing function } \\
g=\text { boundary data } \\
f
\end{array}\right. \\
& \text { = initial data }
\end{aligned}
$$

8.C.3? B=

Equation (1) is Well-Posed if U exists and satisfies

$$
\begin{equation*}
\|U\|_{I}^{2} \leq K\left(\|f\|_{I I}^{2}+\|F\|_{I I I}^{2}+\|g\|_{I V}^{2}\right) . \tag{2}
\end{equation*}
$$

K independent of data F, f, g. A small K is good!
Why is (2) important? Consider the perturbed problem

$$
\begin{align*}
V_{t} & =P V+F+\delta F, \quad x \in \Omega, t \geq 0 \tag{3a}\\
B V & =g+\delta g \quad x \in \Omega, t \geq 0 \tag{3b}\\
V & =f+\delta f \quad x \in \Omega, t=0 \tag{3c}
\end{align*}
$$

(3)-(1) $\Rightarrow W=V-U, P=$ linear operator.

$$
\begin{align*}
W_{t}+P W & =\delta F, \quad x \in \Omega, t \geq 0 \tag{4a}\\
B W & =\delta g \quad x \in \Omega, t \geq 0 \tag{4b}\\
W & =\delta f \quad x \in \Omega, t=0 \tag{4c}
\end{align*}
$$

Apply (2) to (4) \Rightarrow

$$
\begin{equation*}
\|W\|_{I}^{2} \leq K\left(\|\delta f\|_{I I}^{2}+\|\delta F\|_{I I I}^{2}+\|\delta g\|_{I V}^{2}\right) . \tag{5}
\end{equation*}
$$

$\therefore W=V-U$ small if $K, \delta f, \delta F, \delta g$ small!
Uniqueness follows directly from (5).

Figure: A good numerical approximation possible. Choice of numerical method next step.

Figure: A good numerical approximation NOT possible. Change problem, in practice boundary conditions

Existence

$$
\begin{array}{rl}
u_{x}=0 & u=\text { constant } \\
u(0)=a & \\
u(1)=b & a \neq b \Rightarrow \text { too many b.c.'s }! \\
& \underline{\text { Uniqueness }} \\
u_{x x}=0 & u=c_{1}+c_{2} x \\
u(0)=a & u=a+c_{2} x \Rightarrow \text { too few b.c.'s }!
\end{array}
$$

Boundedness

$$
u=a+c_{2} x \text { no bound } \Rightarrow \text { too few b.c.'s }!
$$

Example

$$
\begin{aligned}
u_{t} & =-u_{x}, \quad x \geq 0, t \geq 0 \\
B u & =g, \quad x=0, t \geq 0 \\
u(x, 0) & =0, \quad x \geq 0, t=0 \\
P & =-\frac{\partial}{\partial x}, B=1+\beta \frac{\partial}{\partial x}
\end{aligned}
$$

Laplace $\Rightarrow s \hat{u}+\hat{u}_{x}=0 \Rightarrow \hat{u}=c_{1} e^{-s x}$

$$
\text { i) } \beta=0, c_{1}=\hat{q} \Rightarrow \hat{u}=\hat{q} e^{-s x}, \quad \text { Well posed }
$$

ii) $\beta \neq 0 \quad c_{1}(1-\beta s)=\hat{q} \Rightarrow \hat{u}=\frac{\hat{q}}{1-\beta s} e^{-s x}, \quad \underline{\text { Ill posed }}$

Nonlinear problems

(see Kreiss and Lorenz 1989)

- Linearization principle: A non-linear problem is well-posed at u if the linear problem obtained by linearizing all the functions near u are well-posed.
- Localization principle: If all frozen coefficient problems are well-posed, then the linear problem is also well-posed.

$$
\begin{aligned}
U_{t}+U U_{x}=0, & \text { Nonlinear } \\
U_{t}+\bar{U}(x, t) U_{x}=0, & \text { Linear } \\
U_{t}+\bar{U} U_{x}=0, & \text { Frozen coefficients }
\end{aligned}
$$

Note: Principles valid if no shocks present.

Summary of well-posedness

A problem is well-posed if

- A solution exists (correct number of b.c.)
- The solution is bounded by the data (correct form of b.c.).
- The solution is unique (follows from bound).

A nonlinear problem is related to well-posedness through the Linearization and Localization principles .

If a problem is not well-posed, do NOT discretize. Modify first to get well-posedness. In practice, change b.c.!

Initial value problems for periodic solutions using Fourier transforms

Consider the Cauchy problem on $-\infty \leq x \leq \infty$

$$
\begin{align*}
U_{t} & =P(\partial / \partial x) U+F \tag{6a}\\
U(x, 0) & =f(x) . \tag{6a}
\end{align*}
$$

Definition: The problem (10) is well-posed if there is a unique solution satisfying

$$
\begin{equation*}
\|u\|^{2} \leq k^{2} e^{2 \alpha t}\left(\|f\|^{2}+\int_{0}^{t}\|F\|^{2} d t\right) \tag{7}
\end{equation*}
$$

where k, α are bounded constants.

As an example, consider

$$
U_{t}+A U_{x}=B U_{x x}
$$

where $A, B=$ constant and symmetric. Fourier transform \Rightarrow

$$
\begin{gathered}
\hat{P}(i \omega)=-\left(i \omega A+\omega^{2} B\right) \\
\hat{U}_{t}=\hat{P}(i \omega) \hat{U}, \hat{U}(0)=\hat{f}, \Rightarrow \hat{U}=e^{\hat{P}(i \omega) t} \hat{f}
\end{gathered}
$$

Theorem (6) is well-posed if there are constants k, α such that

$$
\begin{equation*}
\left|e^{\hat{P}(i \omega) t}\right| \leq k e^{\alpha t} \tag{8}
\end{equation*}
$$

Proof:

$$
\|U\|^{2}=\frac{1}{\sqrt{2 \pi}} \sum_{-\infty}^{\infty}|\hat{U}|^{2} \leq \max \left(\left|e^{\hat{P}(i \omega) t}\right|^{2}\right) \frac{1}{\sqrt{2 \pi}} \sum_{-\infty}^{\infty}|\hat{f}|^{2} \leq k^{2} e^{2 \alpha t}\|f\|^{2}
$$

Definition: The Petrovski condition is satisfied if the eigenvalues $\lambda(\omega)$ of $\hat{P}(i \omega)$ satisfy

$$
\begin{equation*}
\operatorname{Re}(\lambda(\omega)) \leq \alpha \tag{9}
\end{equation*}
$$

$\alpha=$ constant, independent of $\omega, \alpha=0$ if no zero order terms.
Theorem: The Petrovski condition is necessary for well-posedness. It is sufficient if there is a constant K and matrix T such that $T^{-1} \hat{P} T=$ diagonal and $\left\|T^{-1}\right\| \||| | \leq K$ for all ω.

Proof: The Petrovski condition leads to the estimate (8).

Periodic difference approximations

$$
\begin{align*}
\frac{d}{d t} U_{j} & =Q U_{j}+F_{j} \tag{10a}\\
U_{j}(0) & =f_{j} \tag{10b}
\end{align*}
$$

where U_{j}, F_{j}, f_{j} are vectors and Q is a matrix.
Definiition: The Petrovski condition is satisfied if the eigenvalues of the symbol $\hat{Q}(\xi)$ satisfy

$$
\begin{equation*}
\operatorname{Re}(\lambda(\xi, h)) \leq \alpha \tag{11}
\end{equation*}
$$

where $|\xi|=|\omega h|<\pi$.

Theorem: The problem (10) is stable in the semi-discrete sense if (11) is valid and \hat{Q} can be diagonalized using a similarity transform with a bounded condition number.

Note similarity with PDE, the proofs are the same.
As an example, consider the heat equation.

$$
\begin{aligned}
\frac{d}{d t} U_{j} & =Q U_{j}=\frac{U_{j+1}-2 U_{j}+U_{j-1}}{h^{2}} \\
U_{j} & =f_{j}
\end{aligned}
$$

Expand in Fourier-series

$$
U_{j}=\frac{1}{\sqrt{2 \pi}} \sum_{-\infty}^{\infty} \hat{U}_{\omega} e^{i \omega x_{j}} .
$$

The problem separates into

$$
\frac{d}{d t} \hat{U}_{\omega}=\hat{Q} \hat{U}_{\omega} \quad \hat{U}_{w}=\hat{f}_{\omega} \quad \Rightarrow \hat{U}_{\omega}=e^{\hat{\varrho} t} \hat{f}_{\omega} .
$$

\therefore Exactly as in continuous case.
Let $\omega h=\xi$. We have $Q=D_{+} D_{-} \Rightarrow$

$$
\begin{aligned}
Q e^{i \omega x_{j}} & =\frac{e^{i \omega x_{j+1}}-2 e^{i \omega x_{j}}+e^{i \omega x_{j-1}}}{h^{2}} \\
& =e^{i \omega x_{j}} \frac{\left(e^{i \xi}-2+e^{-i \xi}\right)}{h^{2}}=e^{i \omega x_{j}} \frac{\left(e^{i \xi / 2}-e^{-i \xi / 2}\right)}{h^{2}} \\
& =e^{i \omega x_{j}}\left(-4 \frac{\sin (\xi / 2)^{2}}{h^{2}}\right)=e^{i \omega x_{j}} \hat{Q} .
\end{aligned}
$$

- The Von Neumann condition on the time-step comes from the specific time-advancement scheme.
- The Petrovski, eigenvalue condition is more general, and fundamental.

Example of Von Neumann condition using Euler forward:

$$
\begin{aligned}
\hat{U}^{n+1} & =(1+\Delta t \hat{Q}) \hat{U}^{n} \\
& =\tilde{\hat{Q}} \hat{U}^{n}
\end{aligned}
$$

$|\tilde{\hat{Q}}| \leq 1, \Rightarrow$ condition on time-step.

Summary of theory for initial value problems

The continuous/semi-discrete problem is well-posed/stable if

- The Petrovski (Von Neumann) condition is satisfied.
- $\hat{Q}=T \Lambda T^{-1}$ can be diagonalized and $\left\|T^{-1}|\|| |\| \leq K\right.$.
\therefore Stability in semi-discrete form \approx well-posedness for PDE.

Exercises/Seminars

- Discuss the difference between the Petrovski and Von Neumann condition.
- Discuss the use of energy-methods for periodic problems.
- Prove that the two bullets on previous slide lead to well-posedness and stability.
- Prove that no positive real parts in eigenvalues of A if $A+A^{*} \geq 0$.

