Numerical Solution of Initial Boundary Value
Problems

Jan Nordstrom
Division of Computational Mathematics
Department of Mathematics
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Overview

Material: Notes + JNO + GUS + GKO + HANDOUTS.
Homepage http://courses.mai.liu.se/FU/MAI0122/
Notes at http://courses.mai.liu.se/FU/MAI0122/Lecture/
Schedule: 6 lectures + 3 exercises + 3 seminars.
Examination: 3 seminar presentations + 3 homeworks.
Credit 3 points, European/Bologna system.

Email: jan.nordstrom@liu.se



Schedule

Times Tuesday =~ Wednesday Thursday Friday
09:30-10:00 Seminar 1 Seminar 2 Seminar 3
10:00-10:15 Coffee/Tea  Coffee/Tea Coffee/Tea
10:15-12:00  Lecture 1 Lecture 3 Lecture 5 Closure
12:00-13:15 Lunch Lunch Lunch Lunch
13:15-15:00  Lecture 2 Lecture 4 Lecture 6
15:00-15:15 Coffee/Tea  Coffee/Tea  Coffee/Tea
15:15-16:30  Exercise 1 Exercise 2 Exercise 3

Seminar preparation during exercises.



General structure and principles

“The Big Picture”

Relate the PDE to the numerical approximation.

Semi-discrete approximation in space, time is left
continuous (until last lecture).

Linear problems and smooth nonlinear problems.

All approximations of the form: U; + AU = F.

What can we say about A based on knowledge of A + AT ?
High order finite differences, the SBP-SAT technique.

Extension to techniques for more complex geometries:
multi-block, finite volume + dG techniques.



Course material

Slides + possible additional handouts+references to
relevant articles.

JNO: A Roadmap to Well Posed and Stable Problems in
Computational Physics, J. Nordstrom, Journal of Scientific
Computing, Volume 71, Issue 1, pp. 365-385, 2017.

GUS: High Order Difference Methods for Time Dependent
PDE, Bertil Gustafsson, Springer-Verlag 2008.

GKO: Time Dependent Problems and Difference Methods,
Bertil Gustafsson, Heinz-Otto Kreiss, Joseph Oliger, John
Wiley & Sons, 1995.
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Well posed problems

U; + PU =F(x,t), x€eQ,t>0 (1a)
BU =g(x,t) x€06Q,t>0 (1b)
u=fx) x€Q, t=0 (1c)

U = dependent variable
P = differential operator in space
B = boundary operator

F = forcing function
data {g¢ = boundary data
= initial data



Equation (1) is Well-Posed if U exists and satisfies

I < K (IFIR + IFIZ + l1g12,).- 2)

Kindependent of data F,f,g. A small K is good !

Why is (2) important? Consider the perturbed problem

Vi=PV+F+06F, x€Q,t>0 (3a)
BV=g+06g x€Q,t>0 (3b)
V=f+6f x€Q, t=0. (3c)



(3)-(1) = W =V - U, P = linear operator.

Wi+ PW=06F, x€Q,t>0 (4a)
BW=06g x€Q,t>0 (4b)
W=06f x€Q,t=0. (40)

Apply (2) to (4) =

IWIE < K (1012 + I6FI, + llogIZ, ). 5)

S W=V —Usmallif K, 0f, 6F, 6 small!

Uniqueness follows directly from (5).
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Figure: A good numerical approximation possible. Choice of
numerical method next step.
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Figure: A good numerical approximation NOT possible. Change
problem, in practice boundary conditions



Existence

Uy =0 u = constant
u(0)=a
u(l)y="= a# b = toomany b.c.’s !
Uniqueness
Uy =0 u=cy+0cx
u(0)=a u=a+cx = toofewb.c.’s!

Boundedness

U = a+ cox no bound = too few b.c.’s !



Example
Ur=—uUy, x>0,t>0
Bu=g, x=0,t>0
u(x,0)=0, x>0,t=0
P=-4,B=1+p<

Laplace = sit + i1, = 0= i = cje™*

i)p=0, c1 =§=0=ge*, Well posed

i)p#0 c(l-ps)=q=1i= 1_iﬁse_sx, 11 posed



Nonlinear problems

(see Kreiss and Lorenz 1989)

e Linearization principle: A non-linear problem is

well-posed at u if the linear problem obtained by
linearizing all the functions near u are well-posed.

e Localization principle: If all frozen coefficient problems are

well-posed, then the linear problem is also well-posed.

U; + UU, = 0, Nonlinear
U; + U(x, t)U, = 0, Linear
U; + UU, =0, Frozen coefficients

Note: Principles valid if no shocks present.



Summary of well-posedness

A problem is well-posed if

¢ A solution exists (correct number of b.c.)

e The solution is bounded by the data (correct form of b.c.).

e The solution is unique (follows from bound).

A nonlinear problem is related to well-posedness through the
Linearization and Localization principles .

If a problem is not well-posed, do NOT discretize. Modify first
to get well-posedness. In practice, change b.c.!




Initial value problems for periodic solutions using
Fourier transforms

Consider the Cauchy problem on —co < x < o0

U, = P(9/ox)U + F (6a)
U(x,0) = £(x). (6a)

Definition: The problem (10) is well-posed if there is a unique
solution satisfying

t
llul® < K?e*! (II}‘II2 + f IIFIIZdt), @)
0

where k, @ are bounded constants.



As an example, consider
U + AUy = BU,
where A, B = constant and symmetric. Fourier transform =
P(iw) = —(iwA + ©*B),
0, = Pliw)I, T(0)=f, = U= @i}
Theorem (6) is well-posed if there are constants k, a such that

|ep(iw)t| < ket (8)

Proof:

1 v .~ B 1
IUIP = —= ) TP < max(le" ') —= ) [fI* < k2*|fII*.
V21 _Zo‘o‘ V21 _Zo:‘ f f



Definition: The Petrovski condition is satisfied if the
eigenvalues A(w) of P(iw) satisfy

Re(A(w)) < a. )

a = constant, independent of w, a = 0 if no zero order terms.

Theorem: The Petrovski condition is necessary for
well-posedness. It is sufficient if there is a constant K and
matrix T such that T~'PT = diagonal and ||T~||||T|| < K for all w.

Proof: The Petrovski condition leads to the estimate (8).



Periodic difference approximations

%Uj = QU]' + P]‘ (10a)
Ui(0) = f; (10b)

where Uj, Fj, f; are vectors and Q is a matrix.

Definiition: The Petrovski condition is satisfied if the
eigenvalues of the symbol Q(&) satisfy

Re(A(&, h)) < a, (11)

where || = |wh| < 7.



Theorem: The problem (10) is stable in the semi-discrete sense if
(11) is valid and Q can be diagonalized using a similarity
transform with a bounded condition number.

Note similarity with PDE, the proofs are the same.

As an example, consider the heat equation.

d U]'+1 - ZU]' + u]'_l

arthi = QUi = 2

U =f.

Expand in Fourier-series

(o]

1
V2 &

Ll]- = Hw eimxf .



The problem separates into

d A, AN A ~, A A A
&uw = Qua) Uy :fw = U, = thf(w
.. Exactly as in continuous case.

Letwh =& Wehave Q=D,D_ =

o ei(l)x]'+] _ zeiwxj + eiwxj_l
Qe ] = hZ
_ eia)x]- (eié -2+ e—ié) _ eimx/- (eié/Z — e_ié/Z)
B h2 B h2

: 2
— eiwx]- (_4 sim (hgz/z) ) — eiwij.



e The Von Neumann condition on the time-step comes from
the specific time-advancement scheme.

e The Petrovski, eigenvalue condition is more general, and
fundamental.

Example of Von Neumann condition using Euler forward:

! = 1 + AQ)U"
= ol

Ol <1,= condition on time-step.



Summary of theory for initial value problems

The continuous/semi-discrete problem is well-posed/stable if

e The Petrovski (Von Neumann) condition is satisfied.
e O =TAT! canbe diagonalized and IT~YIIT) < K.

.. Stability in semi-discrete form ~ well-posedness for PDE.



Exercises/Seminars

Discuss the difference between the Petrovski and Von
Neumann condition.

Discuss the use of energy-methods for periodic problems.

Prove that the two bullets on previous slide lead to
well-posedness and stability.

Prove that no positive real parts in eigenvalues of A if
A+A">0.



