Numerical Solution of Initial Boundary Value Problems

Jan Nordström Division of Computational Mathematics Department of Mathematics

Lecture 3

High Order Finite Difference Approximations, Summation-by-Parts Operators and Weak Boundary Procedures

Pros and Cons for High Order Finite Difference Methods:

- + efficient
- + scales well in multiple dimensions
- + easy to program
- + easy to modify locally (shocks)
- not trivial to capture complex geometry
- stability at boundaries and interfaces

Can we get rid of the last drawback?

Stability problems

Continuous (
$$||u||^2 = \int_0^1 u^2 dx$$
)

$$u_t + au_x = 0, \quad u(0,t) = g(t) \quad \Rightarrow \quad \frac{d}{dt}||u||^2 = \underbrace{ag^2(t)}_{\geq 0} - \underbrace{au(1,t)^2}_{\geq 0}$$

Semi-discrete ($||u||_h^2 = \sum_{i=1}^{N-1} u_i u_i \Delta x$)

$$u_{it} + a\left(\frac{u_{i+1} - u_{i-1}}{2\Delta x}\right) = 0, \quad u_0 = g(t), \quad \Rightarrow \quad \frac{d}{dt}||u||^2 = \underbrace{ag(t)u_1}_{=?} - \underbrace{au_N u_{N-1}}_{=?}$$

: We need a modified formulation.

Summation-By Parts (SBP) operators for FEM-dG-spectral methods

$$u_t + au_x = 0 (1)$$

Let
$$u = L^T(x)$$
 $\vec{\alpha}(t) = \sum_{i=0}^{N} \alpha_i(t)\phi_i(x)$.

$$L = (\phi_0, \phi_1, \dots \phi_N)^T, \quad \vec{\alpha} = (\alpha_0, \alpha_1, \dots \alpha_N)^T$$

Insert into $(1) \Rightarrow$

$$L^{T}\vec{\alpha}_{t} + aL_{x}^{T}\vec{\alpha} = 0 \Rightarrow \underbrace{\int_{0}^{1} LL^{T}dx \,\vec{\alpha}_{t} + a \underbrace{\int_{0}^{1} LL_{x}^{T}dx \,\vec{\alpha}}_{Q} = 0$$

$$P\vec{\alpha}_t + aQ\vec{\alpha} = 0$$

Intergration-by-parts

$$P\vec{\alpha}_t + aL L^T \Big|_0^1 \vec{\alpha} - a \int_0^1 L_x L^T dx \ \vec{\alpha} = 0 \Rightarrow P\vec{\alpha}_t + aB\vec{\alpha} - aQ^T \alpha = 0$$

$$B = L L^{T} \Big|_{0}^{1} = \begin{bmatrix} \phi_{0} \\ \phi_{1} \\ \vdots \\ \phi_{N} \end{bmatrix} [\phi_{0} \ \phi_{1} \ \dots \ \phi_{N}] \Big|_{0}^{1} = \begin{bmatrix} \phi_{0}\phi_{0} & \phi_{0}\phi_{1} & \dots \\ \phi_{1}\phi_{0} & & & \\ & & \ddots & & \\ & & & \phi_{N}\phi_{N} \end{bmatrix}_{0}^{1}$$

For Lagrange polynomials we get

$$B = L L^{T} \Big|_{0}^{1} = \begin{bmatrix} 0 & & & & \\ & 0 & & & \\ & & \ddots & & \\ & & & 1 \end{bmatrix} - \begin{bmatrix} 1 & & & & \\ & 0 & & \\ & & \ddots & \\ & & & 0 \end{bmatrix} = \begin{bmatrix} -1 & & & \\ & 0 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}.$$

Summation-By-Parts (SBP) operators

Taking a closer look at what we did. Comparing

$$P\vec{\alpha}_t + aQ\vec{\alpha} = 0 \quad with \quad P\vec{\alpha}_t + aB\vec{\alpha} - aQ^T\alpha = 0$$
 leads to $Q = B - Q^T$.

We have derived Ps and Qs by using basis functions and integration by parts.

- *P* symmetric positive definite: $y^T P y = \int_0^1 (L^T y)^T (L^T y) dx$.
- Q almost skew-symmetric: $Q + Q^T = \int_0^1 LL_x^T + L_xL^T dx = B$

Later, we will do it without basis functions, directly, for finite differences.

Energy estimates

Continuous

$$\frac{d}{dt}||u||^2=a\left(u^2(0,t)-u^2(1,t)\right)$$

Semi-discrete

$$\frac{1}{2}\frac{d}{dt}\left(\alpha^T P \alpha\right) + a\vec{\alpha}^T \left(\frac{Q + Q^T}{2} + \frac{Q - Q^T}{2}\right)\vec{\alpha} = 0 \implies \frac{d}{dt}||\alpha||_P^2 = a(\alpha_0^2 - \alpha_N^2).$$

 We will derive P and Q for high order finite difference methods.

SBP operators

$$(u, v_x) = \int_0^1 u v_x dx = u v|_1 - u v|_0 - (u_x, v)$$
 (3)

We want to mimic this discretely such that

$$(u, Dv) = u^T P Dv = u_N v_N - u_0 v_0 - (Du, v).$$

$$u = (u_0, u_1, ... u_N)^T$$
, D and P $(N + 1) \times (N + 1)$ matrices

- Does *P* and *D* exist ? (Yes, if one uses basis functions)
- What symmetry requirements are needed?
- How to construct *P* and *D* ?

Example

$$\frac{du_{j}}{dt} = Du_{j}, Du_{j} = \begin{cases} D_{+}u_{j}, & j = 0 \\ D_{0}u_{j}, & j \neq 0, N \\ D_{-}u_{j}, & j = N \end{cases}$$

Choose scalar product:
$$(u, v)_h = \frac{h}{2}u_0v_0 + h\sum_{j=1}^{N-1}u_jv_j + \frac{h}{2}u_Nv_N$$

 $(u, v)_h = u^T P v, \quad P = h \operatorname{diag}(1/2, 1, 1, ..., 1, 1/2)$

$$D = \frac{1}{h} \begin{bmatrix} -1 & 1 & 0 & & & \\ -1/2 & 0 & 1/2 & & & \\ & \ddots & \ddots & \ddots & & \\ & & -1/2 & 0 & 1/2 \\ & & & -1 & 1 \end{bmatrix}, \ PD = Q = \frac{1}{2} \begin{bmatrix} -1 & 1 & 0 & & \\ -1 & 0 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & & -1 & 0 & 1 \\ & & & & & -1 & 1 \end{bmatrix}$$

$$Q + Q^T = \begin{bmatrix} -1 & 0 & 0 & & \\ 0 & 0 & 0 & & \\ & \ddots & \ddots & \ddots & \\ & & 0 & 0 & 0 \\ & & 0 & 0 & 1 \end{bmatrix}.$$

We get

$$(u, Du) = u^T P D u = u^T Q u = u^T (\frac{Q + Q^T}{2}) u = \frac{1}{2} (u_N^2 - u_0^2).$$

- Exactly the analytical result.
- Higher order approximations in the same way, but with more involved algebra.

High order SBP operators

 P_0^A , Q_0^A are transposed along the anti-diagonal

Theorem ("block norm") For interior order of accuracy 2S, P, Q exist such that $P = P^T > 0$, $P_0 =$ block matrix and $Q + Q^T = B$ with order 2S - 1 near boundaries.

Theorem ("diagonal norm") For interior order of accuracy 2S, $1 \le S \le 5$, P, Q exist such that $P = P^T > 0$, $P_0 =$ diagonal matrix, and $Q + Q^T = B$ with order S near boundaries.

The P matrix (or P norm) is an integration operator (both block and diagonal) of order 2S = interior accuracy.

Let: ϕ smooth function, $\vec{\phi} = \phi$ injected at the grid points.

Then: $\frac{\partial \phi}{\partial x}$ smooth function, $(\frac{\partial \vec{\phi}}{\partial x}) = \frac{\partial \phi}{\partial x}$ injected at the grid points.

Let $\vec{1} = (1, 1, ..., 1, 1)$. We get

$$\vec{1}^T P(\frac{\partial \vec{\phi}}{\partial x}) = \phi_N - \phi_0 + O(h^{2s}),$$

$$\vec{1}^T P(P^{-1} Q \vec{\phi}) = \vec{1}^T Q \vec{\phi} = \vec{1}^T \left[-Q^T + B \right] \vec{\phi} = -(Q \vec{1})^T \vec{\phi} + \phi_N - \phi_0.$$

- Integration operator of order 2S.
- Exact "integration back" of the numerical derivative.

Construction of SBP operators

Symmetry requirements: make ansatz on elements, aim for

$$P = P^T > 0$$
, $Q + Q^T = \text{diag}[-1, 0, 0, ..., 0, 1]$.

Accuracy requirements:

$$P^{-1}Q\vec{1} = 0, Q\vec{1} = 0$$

 $P^{-1}Q\vec{x} = \vec{1}, Q\vec{x} = P\vec{1}$
 $P^{-1}Q\vec{x^2} = 2\vec{x}, Q\vec{x^2} = 2P\vec{x}$
 $\vdots \vdots$

$$\vec{1} = (1, 1, ..., 1, 1), \quad \vec{x} = (0, \Delta x, 2\Delta x, ...1), \quad \vec{x^2} = (0, \Delta x^2, ..., 1)$$

- Solve for unknowns in *P*, *Q* using e.g. Maple.
- Non-unique operators, more unknowns than equations.
- Parameters modify bandwith, errors and spectral radius.

Summary: first derivative SBP operators

- SBP operators mimic Integration-by-Parts.
 - $u_x \approx P^{-1}Qu, P = P^T > 0, Q + Q^T = B$
 - $u_{xx} \approx (P^{-1}Q)^2 u$, (wide).
 - $u_{xx} \approx P^{-1}(-A + BD), A + A^T \ge 0$ (compact)
 - Diagonal norm operators most important.
 - Numerical boundary conditions form SBP operators.
 - SBP operators for "all" orders exist.
- References
 - B. Strand, JCP 1994.
 - M.H. Carpenter, J. Nordström & D. Gottlieb JCP 1999.
 - K. Mattsson & J. Nordström, JCP 2004.
 - M. Svärd & J. Nordström, (Review) JCP 2013.

What about boundary conditions?

$$u_t + au_x = 0$$
, $u(0, t) = g(t)$

(i) Multiply with smooth function α and integrate.

$$\int_0^1 \alpha u_t dx + a \int_0^1 \alpha u_x dx = 0 \ \Rightarrow \ \int_0^1 \alpha u_t dx + a \alpha \ u|_0^1 - a \int_0^1 \alpha_x u dx = 0$$

(ii) Change u(0, t) to g(t) (dG procedure) and integrate back.

$$\int_0^1 \alpha u_t dx + a \int_0^1 \alpha u_x = \underbrace{-\alpha(0)a \left(u(0,t) - g\right)}_{\text{penalty term}}$$

(iii) Stability? Change $\alpha \rightarrow u$ and integrate.

$$\frac{d}{dt}||u||^2 = ag^2 - au^2(1,t) - a\left(u(0,t) - g\right)^2$$

More on boundary conditions

 $P\vec{\alpha}_t + aQ\vec{\alpha} = 0$, $Q + Q^T = B$ \Rightarrow $P\vec{\alpha}_t + aB\vec{\alpha} - aQ^T\vec{\alpha} = 0$. dG trick: replace "what you have with what you like" $\alpha_0 \to g(t)$.

$$P\vec{\alpha}_t + a \begin{bmatrix} -g(t) \\ 0 \\ \vdots \\ \alpha_N \end{bmatrix} - aQ^T\vec{\alpha} = 0, \quad \Rightarrow \quad P\vec{\alpha}_t + aQ\vec{\alpha} = \begin{bmatrix} -a(\alpha_0 - g(t)) \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• dG uses a weak penalty formulation.

$$\frac{1}{2}\frac{d}{dt}\left(\alpha^T P \alpha\right) + a\vec{\alpha}^T \left(\frac{Q + Q^T}{2} + \frac{Q - Q^T}{2}\right)\vec{\alpha} = -a\alpha_0(\alpha_0 - g(t)) \implies \frac{d}{dt}\|\alpha\|_P^2 = a(g(t)^2 - \alpha_N^2) - a(\alpha_0 - g(t))^2.$$

• dG is energy stable with optimally sharp energy estimates.

Weak boundary procedure - SAT

"Simultaneous Approximation Term"

How do we impose boundary conditions that lead to stability?

$$u_t + au_x = 0$$
, $u(0,t) = g$, $\Rightarrow \frac{d}{dt}||u||^2 = ag^2 - au^2(1,t)$

How do we mimic this discretely?

$$u_t + aP^{-1}Qu = B(u_0 - g)$$
, RHS is accurate, but what is *B*?

Energy

$$u^T P u_t + a u^T Q u = u^T P B(u_0 - g), \ \Rightarrow \ \frac{d}{dt} ||u||_P^2 = a u_0^2 + 2 u^T P B(u_0 - g) - a u_N^2$$

We need

$$BT = au_0^2 + 2u^T PB(u_0 - g) \le ag^2.$$

Let

$$B(u_0 - g) = \sigma P^{-1}(u_0 - g)e_0, \ e_0 = (1, 0, 0, ..., 0)^T, \sigma = \text{unknown}.$$

This leads to

$$BT = au_0^2 + 2\sigma u_0(u_0 - g) = ag^2 + \begin{bmatrix} u_0 \\ g \end{bmatrix}^T \begin{bmatrix} a + 2\sigma & -\sigma \\ -\sigma & -a \end{bmatrix} \begin{bmatrix} u_0 \\ g \end{bmatrix}$$
$$= g^2 - a(u_0 - g)^2$$

if $\sigma = -a$.

$$\therefore \frac{d}{dt}||u||_{P}^{2} = ag^{2} - au_{N}^{2} - a(u_{0} - g)^{2}$$

∴ "More stable than the IBVP".

SBP-SAT for advection-diffusion problems

$$u_t + au_x = \epsilon u_{xx}$$
; $0 \le x \le 1, t \ge 0$ (4a)

$$L_0 u = g_0 \qquad \qquad x = 0, t \ge 0 \tag{4b}$$

$$L_1 u = g_1 \qquad \qquad x = 1, t \ge 0 \tag{4c}$$

$$u(x, 0) = f(x)$$
 $0 \le x \le 1, t = 0$ (4d)

Energy method for determining L_0 , L_1 . We consider a, $\epsilon > 0$.

$$\int_0^1 uu_t + auu_x dx = \epsilon \int_0^1 uu_{xx} dx \Rightarrow \left(||u||^2 = \int_0^1 u^2 dx \right)$$

$$\frac{d}{dt}||u||^2 + 2\epsilon||u_x||^2 = (au^2 - 2\epsilon u \ u_x)_0 - (au^2 - 2\epsilon u u_x)_1.$$

Note that

$$BT = au^2 - 2\epsilon uu_x = a^{-1} \left[(au - \epsilon u_x)^2 - (\epsilon u_x)^2 \right].$$

$$BT = a^{-1} \left[(au - \epsilon u_x)^2 - (\epsilon u_x)^2 \right]$$

At x = 0, let

$$L_0 = a - \epsilon \frac{\partial}{\partial x}$$

At x = 1, let

$$L_1 = \epsilon \frac{\partial}{\partial x}$$

This leads to

$$BT_0 = a^{-1} [g_0^2 - (\epsilon u_x)^2], \quad BT_1 = a^{-1} [(au - \epsilon u_x)^2 - g_1^2]$$

: Well-posed boundary conditions with a bounded energy.

$$u_{t} + aP^{-1}Qu = \epsilon P^{-1}Qu_{x} + P^{-1}\sigma_{0}(au_{0} - \epsilon(u_{x})_{0} - g_{0})e_{0} + P^{-1}\sigma_{1}(\epsilon(u_{x})_{N} - g_{1})e_{N}$$

$$u(0) = f$$
(5)

The parameters σ_0 , σ_1 will be determined by stability requirements. We also used $u_x = P^{-1}Qu$, $e_0 = (1, 0, 0, ..., 0)^T$, $e_N = (0, 0, ..., 0, 1)^T$.

Energy

$$u^{T}Pu_{t} + au^{T}Qu = \epsilon u^{T}Qu_{x} + \sigma_{0}u_{0}(au_{0} - \epsilon(u_{x})_{0} - g_{0}) + \sigma_{1}u_{N}(\epsilon(u_{x})_{N} - g_{1})$$
(6)

Add transpose of equation (6) to itself \Rightarrow

$$\underbrace{u^T P u_t + u_t^T P u}_{(1)} + \underbrace{a u^T (Q + Q^T) u}_{(2)} - \underbrace{\epsilon (u^T Q u_x + u_x^T Q^T u)}_{(3)} + 2BT. \quad (7)$$

$$(1) = \frac{d}{dt}(u^{T}Pu) = \frac{d}{dt}(||u||_{P}^{2})$$

$$(2) = au^{T}(Q + Q^{T})u = au^{T}Bu = a(u_{N}^{2} - u_{0}^{2})$$

$$(3) = \epsilon (u^T Q u_x + u_x^T Q^T u) = \epsilon (u^T (-Q^T + B) u_x + u_x^T (-Q + B) u)$$

= $-\epsilon (u^T Q^T u_x + u_x^T Q u) + \epsilon (u^T B u_x + u_x^T B u)$

$$u^{T}Q^{T}u_{x} + u_{x}^{T}Qu = 2u_{x}^{T}Qu = 2u_{x}^{T}PP^{-1}Qu = 2u_{x}^{T}Pu_{x} = 2\epsilon ||u_{x}||_{P}^{2}$$
$$u^{T}Bu_{x} + u_{x}^{T}Bu = 2u^{T}Bu_{x} = 2u_{N}(u_{x})_{N} - 2u_{0}(u_{x})_{0}$$

$$\therefore \frac{d}{dt}||u||^2 + 2\epsilon||u_x||^2 = \underbrace{(au_0^2 - 2\epsilon u_0(u_x)_0) - (au_N^2 - 2\epsilon u_N(u_x)_N)}_{\text{constant}}$$

from equation

$$=2\sigma_0u_0(au_0-\epsilon(u_x)_0-g_0)+2\sigma_1u_N(\epsilon(u_x)_N-g_1)$$

from penalty terms

Choose $\sigma_0 = -1$, $\sigma_1 = -1$ such that mixed the uu_x terms cancel.

$$RHS = -au_0^2 + 2u_0g_0 - au_N^2 + 2u_Ng_1$$

$$= \frac{g_0^2}{a} - \frac{g_0^2}{a} - au_0^2 + 2u_0g_0 + \frac{g_1^2}{a} - \frac{g_1^2}{a} - au_N^2 + 2u_Ng_1$$

$$-a^{-1}(au_0 - g_0)^2 - a^{-1}(au_N - g_1)^2$$

$$\frac{d}{dt}(||u||_P^2) + 2\epsilon ||u_x||_P^2 = \frac{g_0^2}{a} - a^{-1}(au_0 - g_0)^2 + \frac{g_1^2}{a} - a^{-1}(au_N - g_1)^2$$

∴ Similar to the continuous energy estimate.

Summary of SAT procedure

- Find well-posed boundary conditions that lead to an energy estimate.
- Construct penalty/forcing terms that impose these boundary conditions.
- Choose penalty coefficient such that indefinite terms are removed.
- Aim for the same/similar estimate as in the continuous case.
- References
 - INO
 - M. H. Carpenter, D. Gottlieb & S. Abarbanel JCP 1994.
 - M.H. Carpenter, J. Nordström & D. Gottlieb JCP 1999.

Second derivative SBP operators

$$(u, u_{xx}) = \int_0^1 u u_{xx} dx = u u_x |_1 - u u_x |_0 - ||u_x||^2$$
 (8)

Can we construct operators that mimics (8)?

Yes, by for example using the first derivative twice.

$$(u, (P^{-1}Q)^2 u) = u^T Q u_x = u^T (-Q^T + B) u_x = u_N (u_x)_N - u_0 (u_x)_0 - ||u_x||_P^2$$

since

$$-u^T Q^T u_x = -u^T Q^T P^{-1} P u_x = -(P^{-1} Q u)^T P u_x = -u_x^T P u_x.$$

Drawbacks with wide operator $(P^{-1}Q)^2$

- Unnecessary wide which leads to large error constant.
- Bad damping of high wave-numbers, which the PDE have.

$$u_t = u_{xx} \quad u = \hat{u}e^{i\omega x} \Rightarrow \hat{u}_t = -\omega^2 \hat{u}$$

$$\hat{u}_{jt} = D_0 D_0 u_j \quad \hat{u} = \hat{u}e^{i\omega x_j} \Rightarrow \hat{u}_t = -\frac{1}{h^2} \sin^2(\xi)\hat{u}$$

$$u_{jt} = D_+ D_- u_j \quad u = \hat{u}e^{i\omega x_j} \Rightarrow \hat{u}_t = -\frac{4}{h^2} \sin^2(\xi/2)\hat{u}$$

For $\xi_{\text{max}} = \pi$, there is no damping with the wide operator.

Compact second derivative SBP operator

Consider:

$$D^{(2)} = (P^{-1}Q)^2 = P^{-1}(QP^{-1}Q) = P^{-1}((-Q^T + B)P^{-1}Q) =$$

$$= P^{-1}(-Q^TP^{-1}Q + BP^{-1}Q)$$

$$u^TPD^{(2)}u = u^T(-Q^TP^{-1}Q + BP^{-1}Q) = -(Qu)^TP^{-1}Qu + u^TBDu$$

$$= -(P^{-1}Qu)^TP(P^{-1}Qu) + u^TBDu =$$

$$= -||Du||_P^2 + u^TBDu. \text{ A perfect stability result.}$$

Can we make a compact version of this?

Yes! It has the structure:

$$D^{(2)} = P^{-1}(-A + BD)$$

Observations regarding $D^{(2)} = P^{-1}(-A + BD)$

- Compact, occupies same space as $P^{-1}Q$.
- $A + A^T \ge 0$ for stability.
- Clumsy to use for flux-based equations. $F = AU \epsilon(B_{11}D_xu + B_{12}D_yu); F_x = D_xF.$
- Certain stability problems for N-S equations since two different first derivatives appear.

The second order accurate operator is

$$D^{(2)} = \frac{1}{h^2} \begin{bmatrix} 1 & -2 & 1 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix},$$

$$A = \frac{1}{h} \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix}, \quad D = \frac{1}{h} \begin{bmatrix} \frac{3}{2} & -2 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ & & & \ddots \end{bmatrix}.$$

Exercises/Seminars

- Construct 2nd order SBP operator explicitly
- Prove that a diagonal P is a 2S order accurate integration operator (hint: find the compatibility conditions).
- Derive boundary conditions for the wave equation.
- Show energy-estimates for the semi-discrete wave equation, using the boundary conditions above.