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High Order Finite Difference Approximations,
Summation-by-Parts Operators and Weak Boundary
Procedures

Pros and Cons for High Order Finite Difference Methods:

o + efficient

e + scales well in multiple dimensions
® + easy to program

e + easy to modify locally (shocks)

- not trivial to capture complex geometry

- stability at boundaries and interfaces

Can we get rid of the last drawback?



Stability problems

1
Continuous (||u|*> = f u?dx)
0

wtany =0, u0,H=gl) = lulP =ag) —au(l, ey
dt - L e—,
N-1 =0 =0

Uit — Ui d
up+a (H—l) =0, up=gt), = Ellull2 = ag(t)ur —aunun—_1
—_——
- =2

.. We need a modified formulation.



Summation-By Parts (SBP) operators for

FEM-dG-spectral methods

ur+au, =0

Letu = LT(x) d(t) =

1

L= 01, o), &= (an,a1,an)!

N
=0

ai(t)i(x).

Insert into (1) =

1 1
LT§t+aL§o7=o:>f LLdeo?t+af LLldxd =0
0 0

— —_—
P Q

P(i)t +61Q&): 0
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Intergration-by-parts

1
P& +al L"|'@—a | LLTdx &=0= Pd +aBd —aQ a = 0
0 0

o $oPo o1
P1¢0
1 (Pl 1

B=LL|,=|" |Ipo §1 - On]|, =

o PNPN],
For Lagrange polynomials we get

0 1 -1

0 0

0
_r 7t _ _ _
B=LL| = -



Summation-By-Parts (SBP) operators

Taking a closer look at what we did. Comparing

Pdy+aQd =0 with Pd; +aBd—-aQ a =0

leads to Q = B—QT.

We have derived Ps and Qs by using basis functions and
integration by parts.

e P symmetric positive definite: y' Py = fol(LTy)T(LTy)dx.
e Q almost skew-symmetric: Q + QT = fol LLT +L,LTdx =B

Later, we will do it without basis functions, directly, for finite
differences.



Energy estimates

Continuous

% llf? = a (120, 8) = u*(1, 1))

Semi-discrete

%(OCTPQ) +u0_ZT(Q+2QT + Q;QT)&’: 0o =

N —

d
Zlalf = a(af - a3,

e We will derive P and Q for high order finite difference
methods.



SBP operators

(u,vy) = j; 1 uvxdx = uvly — uvly — (ux, v) 3)
We want to mimic this discretely such that
(u, Do) = u'PDv = unon — ugvg — (Du, v).
u=(ug,uy, ...un)’, Dand P (N + 1) X (N + 1) matrices

e Does P and D exist ? (Yes, if one uses basis functions)
e What symmetry requirements are needed ?
e How to construct P and D ?



Example

du]‘ D"'u]" ] =0
E = Dl/l]‘, DM] = D()l/l]', ] * O,N
D-uj, j=N
N-1
Choose scalar product: (u,v), = %uovg +h Z ujv; + EuNUN
j=1
(u,0), = u'Pv, P =hdiag(1/2,1,1,...,1,1/2)
-1 1 0 -1 1 0
-1/2 0 1/2 -1 0 1
=3 ,PD=Q=1 e
-1/2 0 1/2 -1 0

-1 1 -1
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0 0 0
Q+Q"= KPRV P
0 0 0
0 0 1
We get
Q+Q"

(u,Du) = u' PDu = u"Qu = u"(

1
> u = E(ui] —1u?).

¢ Exactly the analytical result.

e Higher order approximations in the same way, but with
more involved algebra.



High order SBP operators

Pg‘, Qé are transposed along the anti-diagonal

Theorem (“block norm”) For interior order of accuracy 2S, P, Q

exist such that P = PT > 0, Py = block matrix and Q + QT = B
with order 2S5 — 1 near boundaries.

Theorem (“diagonal norm”) For interior order of accuracy 28,

1<S<5,P,Qexist such that P = PT > 0, Py = diagonal matrix,
and Q + QT = B with order S near boundaries.




The P matrix (or P norm) is an integration operator (both block

and diagonal) of order 25 = interior accuracy.

Let: ¢ smooth function, (1; = qb injected at the grid points.

Then: d) smooth function, ( ) = aq; injected at the grid points.

LetT = (1,1,..,1,1). We get
a—¢ = ¢n = Po + O(h™),

T"P(P'QP) = 17Q¢ = 17 [-Q" + B| ¢ = —~(QD)" ¢ + dw — .

e Integration operator of order 2S.

e Exact “integration back” of the numerical derivative.



Construction of SBP operators

Symmetry requirements: make ansatz on elements, aim for
P=P" >0, Q+Q' =diag[-1,0,0,..,0,1].

Accuracy requlrements:

ploi=0, Q=0
plog=1, Q#=P1
PlQx2 = 2%, Qi = 2pP%

T=(1,1,..,1,1), %=(0,Ax,2Ax,..1), x2=(0,A%..,1)

e Solve for unknowns in P, Q using e.g. Maple.
¢ Non-unique operators, more unknowns than equations.
e Parameters modify bandwith, errors and spectral radius.



Summary: first derivative SBP operators

e SBP operators mimic Integration-by-Parts.
e u, ~P1Qu,P=P'>0,Q+Q" =B
o iy ~ (P1Q)%u, (wide).
o Uy ~ PY(=A+BD), A+ AT >0 (compact)
¢ Diagonal norm operators most important.
e Numerical boundary conditions form SBP operators.
e SBP operators for “all” orders exist.
¢ References
e B. Strand, JCP 1994.
e M.H. Carpenter, J]. Nordstrom & D. Gottlieb JCP 1999.
o K. Mattsson & J. Nordstrom, JCP 2004.
e M. Svird & J. Nordstrom, (Review) JCP 2013.



What about boundary conditions?

up +au, =0, u(0,t) = g(t)

(i) Multiply with smooth function a and integrate.

1 1 1 1
f autdx+af audx =0 = f audx+an ul(l)—af ayudx =0
0 0 0 0

(if) Change u(0, t) to g(t) (dG procedure) and integrate back.

1 1
f audx +a f auy = —a(0)a (u(0,t) — g)
0 0

penalty term

(iii) Stability? Change @« — u and integrate.

d
allull2 :ag2 - auz(l, £) —a(u,t) — g)2



More on boundary conditions

Padi+aQd=0, Q+Q'=B = P& +aBd-aQ'd=0.
dG trick: replace “what you have with what you like” ag — g(#).

—8(t) —a(ao — g(f))
0 0
Pa;+a| . |-aQ'@=0, = Pd;+aQd= _
aN 0

e dG uses a weak penalty formulation.

T _ AT
%%(aTPa)+ao7T(Q+2Q +Q 2Q

)07’ = —anp(ap —g(t)) =

%nanl% = a(g(t)* — a%) — a(ao — g())*.

e dG is energy stable with optimally sharp energy estimates.



Weak boundary procedure - SAT

“Simultaneous Approximation Term”

How do we impose boundary conditions that lead to stability ?
d

ur+auy =0, u0,t) =g = EHuH2 = agz - auz(l, t)
How do we mimic this discretely ?

up+aP~'Qu = B(ug — g), RHSis accurate, but what is B?
Energy

d

u Puy+au” Qu = uTPB(uo—g), = a”u”% = au%+2uTPB(uo—g)—au%\]

We need
BT = au} + 2u" PB(ug — §) < ag*.



Let

B(up—g) = aP_l(uo —-9eo, e0=(1,0,0, ..., O)T, o = unknown.

This leads to
) N a+20 —of|ug
BT = aug + 20uo(uo agz + [ s —a] |g]
= 8" —a(ug —g)2
ifo =—a.

AR = ag? — au?, - a(ug — )>

.. “More stable than the IBVP”.



SBP-SAT for advection-diffusion problems

Up + AUy = Elyy 0<x<1t=0 (4a)
Lou = go x=0,t>0 (4b)
Liu=g x=1t>0 (40)

u(x,0) = f(x) 0<x<1,t=0 (4d)

Energy method for determining Lo, L1. We consider a,e > 0.

1 1 1
f ULy + au,dx = ef UllyydX = (llull2 = f ude)
0 0 0

d
Ellull2 + 2¢||uy|? = (au2 —2€U uy)y — (au2 — 2€Uly)1-
Note that

BT = au® — 2euu, =a”! [(au —euy)? - (eux)Z] .



BT =a7! [(au —euy)? - (€ux)2]

Atx =0, let
Ly=a—e—
0 a €8x
Atx =1, let 5
L1 =€e=—
1 eax
This leads to

BTo=a"! [g% - (eux)z] , BTy=a! [(au —€ly)® — gﬂ

.. Well-posed boundary conditions with a bounded energy.



U + aP_lQu = eP_lqu + P‘loo(auo — €(uy)o — go)eo+
+ Pl oy (e(ux)n — g1)en ®)
u©0) =f
The parameters og, 01 will be determined by stability .

requirements. We also used u, = P'Qu, ey =(1,0,0,...,0)7,
en = (0,0,...,0,1)T.

Energy
ul Pug+au’ Qu = eu” Quy+agug(auo—e(iix)o—go) +0o1un(€(tx)N—51)

(6)
Add transpose of equation (6) to itself =

u' Puy + utTPu +au’ (Q + QNu — e(u” Quy + uzQTu) +2BT. (7)

@ @ ®)



P N T

(1) = Z"Pu) = Z(lul)

) =au"(Q+QNu =au"Bu = a(u?\] - ué)

(3) = e(u’ Quy + uzQTu) = e’ (-Q" + B)uy + uz(—Q + B)u)
= - QTu, + quu) +e(u’ Buy + uZBu)

utQTuy + ulQu = 2uTQu = 2uT PP~'Qu = 2ul Pu, = Zelluxlllz,

uTBu, + uzBu =2u'Bu, = 2un ()N — 2up(uy)o

d
Tl + 2elu* = (aug — 2euo(1u)o) = (auy, — 2eun(u)n)

from equation

= 20gug(aug — €(ux)o — go) + 201un(e(tx)N — &1)

from penalty terms



Choose oy = —1, 01 = —1 such that mixed the uu, terms cancel.

RHS = —aué + 2upg0 — aulz\] + 2uNg1

_go 80
_a

2

1 & 2
auo + 2upgo +— T auy; + 2UNg1

—a~}(aug—go)? —a~Y(aun—g1)?

2
4l + 2elul = £ — a7 (ang — go)? + & — a N (auy - g1)?

.. Similar to the continuous energy estimate.



Summary of SAT procedure

Find well-posed boundary conditions that lead to an
energy estimate.

Construct penalty/forcing terms that impose these
boundary conditions.

Choose penalty coefficient such that indefinite terms are
removed.

Aim for the same/similar estimate as in the continuous
case.
References
e JNO
e M. H. Carpenter, D. Gottlieb & S. Abarbanel JCP 1994.
e M.H. Carpenter, J]. Nordstrom & D. Gottlieb JCP 1999.



Second derivative SBP operators

1
(1) = [ st = iy = o <ol 9
0
Can we construct operators that mimics (8)?

Yes, by for example using the first derivative twice.

(u, (P71 QY%u) = u" Quy = u" (=Q" + By = un(ux)n — to(ttx)o — lliixll}
since

—u"QTuy = —u"Q"P'Puy = —(P~'Qu) " Pu, = —uzPux.



Drawbacks with wide operator (P~1Q)?

e Unnecessary wide which leads to large error constant.

e Bad damping of high wave-numbers, which the PDE have.

iwx 2

Ut = Uyy U =0 = 0 = -0l
A A o N 1 . A
itjy = DoDouj 1t = 1€ = i = ~in sin?(&)
~ IWX; ~ 4- 2
ujp=DyD_uj u=ae =i =-— sm (&/2)n

For Emax = 7, there is no damping with the wide operator.



Compact second derivative SBP operator

Consider:
D@ = (P1Q)* = PTH(QP'Q) = P(-Q" + B)PTIQ) =
=P '(-Q"P'Q+BP Q)
u"PD@y = uT(-Q™P'Q + BP'Q) = —(Qu)"P~'Qu + u"BDu
= —(P7'Qu)"P(P'Qu) + u"BDu =
= —||Du||%J +u'BDu. A perfect stability result.

Can we make a compact version of this?

Yes! It has the structure:

D® = p~l(-A + BD)



Observations regarding D@ = P~}(—A + BD)

o Compact, occupies same space as P1Q.

o A+ AT > 0 for stability.

e Clumsy to use for flux-based equations.
F=AU- e(Banu + Blszu); F, =D,F.

e Certain stability problems for N-S equations since two
different first derivatives appear.

The second order accurate operator is
1 -2 1 0

(2)11—21
D=ﬁo1—21,

o

1 -1 0 0 3 23 0
g2 1o 00 0 o0
A=3l0 1 =2 1 |- D=3l0 0 0 o0



Exercises/Seminars

Construct 2nd order SBP operator explicitly

Prove that a diagonal P is a 2S order accurate integration
operator (hint: find the compatibility conditions).

Derive boundary conditions for the wave equation.

Show energy-estimates for the semi-discrete wave
equation, using the boundary conditions above.



