Numerical Solution of Initial Boundary Value Problems

Jan Nordström
Division of Computational Mathematics
Department of Mathematics

Linköping University

Lecture 3

High Order Finite Difference Approximations, Summation-by-Parts Operators and Weak Boundary Procedures

Pros and Cons for High Order Finite Difference Methods:

- + efficient
- + scales well in multiple dimensions
- + easy to program
- + easy to modify locally (shocks)
- - not trivial to capture complex geometry
- - stability at boundaries and interfaces

Can we get rid of the last drawback?

Stability problems

Continuous $\left(\|u\|^{2}=\int_{0}^{1} u^{2} d x\right)$

$$
u_{t}+a u_{x}=0, \quad u(0, t)=g(t) \Rightarrow \quad \frac{d}{d t}\|u\|^{2}=\underbrace{a g^{2}(t)}_{\geq 0}-\underbrace{a u(1, t)^{2}}_{\geq 0}
$$

Semi-discrete $\left(\|u\|_{h}^{2}=\sum_{i=1}^{N-1} u_{i} u_{i} \Delta x\right)$
$u_{i t}+a\left(\frac{u_{i+1}-u_{i-1}}{2 \Delta x}\right)=0, \quad u_{0}=g(t), \quad \Rightarrow \quad \frac{d}{d t}\|u\|^{2}=\underbrace{a g(t) u_{1}}_{=?}-\underbrace{a u_{N} u_{N-1}}_{=?}$
\therefore We need a modified formulation.

Summation-By Parts (SBP) operators for FEM-dG-spectral methods

$$
\begin{equation*}
u_{t}+a u_{x}=0 \tag{1}
\end{equation*}
$$

Let $u=L^{T}(x) \vec{\alpha}(t)=\sum_{i=0}^{N} \alpha_{i}(t) \phi_{i}(x)$.

$$
L=\left(\phi_{0}, \phi_{1}, \ldots \phi_{N}\right)^{T}, \quad \vec{\alpha}=\left(\alpha_{0}, \alpha_{1}, \ldots \alpha_{N}\right)^{T}
$$

Insert into (1) \Rightarrow

$$
\begin{align*}
L^{T} \vec{\alpha}_{t}+a L_{x}^{T} \vec{\alpha}=0 \Rightarrow & \underbrace{\int_{0}^{1} L L^{T} d x}_{P} \vec{\alpha}_{t}+a \underbrace{\int_{0}^{1} L L_{x}^{T} d x}_{Q} \vec{\alpha}=0 \\
& P \vec{\alpha}_{t}+a Q \vec{\alpha}=0 \tag{2}
\end{align*}
$$

Intergration-by-parts

$$
P \vec{\alpha}_{t}+\left.a L L^{T}\right|_{0} ^{1} \vec{\alpha}-a \int_{0}^{1} L_{x} L^{T} d x \vec{\alpha}=0 \Rightarrow P \vec{\alpha}_{t}+a B \vec{\alpha}-a Q^{T} \alpha=0
$$

$$
B=\left.L L^{T}\right|_{0} ^{1}=\left.\left[\begin{array}{c}
\phi_{0} \\
\phi_{1} \\
\vdots \\
\phi_{N}
\end{array}\right]\left[\begin{array}{llll}
\phi_{0} & \phi_{1} & \ldots & \phi_{N}
\end{array}\right]\right|_{0} ^{1}=\left[\begin{array}{cccc}
\phi_{0} \phi_{0} & \phi_{0} \phi_{1} & \ldots & \\
\phi_{1} \phi_{0} & & & \\
& & \ddots & \\
& & & \\
& & \phi_{N} \phi_{N}
\end{array}\right]_{0}^{1}
$$

For Lagrange polynomials we get
$B=\left.L L^{T}\right|_{0} ^{1}=\left[\begin{array}{llll}0 & & & \\ & 0 & & \\ & & \ddots & \\ & & & 1\end{array}\right]-\left[\begin{array}{llll}1 & & & \\ & 0 & & \\ & & \ddots & \\ & & & 0\end{array}\right]=\left[\begin{array}{llll}-1 & & & \\ & 0 & & \\ & & \ddots & \\ & & & 1\end{array}\right]$.

Summation-By-Parts (SBP) operators

Taking a closer look at what we did. Comparing

$$
P \vec{\alpha}_{t}+a Q \vec{\alpha}=0 \quad \text { with } \quad P \vec{\alpha}_{t}+a B \vec{\alpha}-a Q^{T} \alpha=0
$$

leads to $Q=B-Q^{T}$.

We have derived Ps and Qs by using basis functions and integration by parts.

- P symmetric positive definite: $y^{T} P y=\int_{0}^{1}\left(L^{T} y\right)^{T}\left(L^{T} y\right) d x$.
- Q almost skew-symmetric: $Q+Q^{T}=\int_{0}^{1} L L_{x}^{T}+L_{x} L^{T} d x=B$ Later, we will do it without basis functions, directly, for finite differences.

Energy estimates

Continuous

$$
\frac{d}{d t}\|u\|^{2}=a\left(u^{2}(0, t)-u^{2}(1, t)\right)
$$

Semi-discrete

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\left(\alpha^{T} P \alpha\right)+a \vec{\alpha}^{T}\left(\frac{Q+Q^{T}}{2}+\frac{Q-Q^{T}}{2}\right) \vec{\alpha}=0 \Rightarrow \\
\frac{d}{d t}\|\alpha\|_{P}^{2}=a\left(\alpha_{0}^{2}-\alpha_{N}^{2}\right)
\end{gathered}
$$

- We will derive P and Q for high order finite difference methods.

SBP operators

$$
\begin{equation*}
\left(u, v_{x}\right)=\int_{0}^{1} u v_{x} d x=\left.u v\right|_{1}-\left.u v\right|_{0}-\left(u_{x}, v\right) \tag{3}
\end{equation*}
$$

We want to mimic this discretely such that

$$
\begin{gathered}
(u, D v)=u^{T} P D v=u_{N} v_{N}-u_{0} v_{0}-(D u, v) . \\
u=\left(u_{0}, u_{1}, \ldots u_{N}\right)^{T}, D \text { and } P(N+1) \times(N+1) \text { matrices }
\end{gathered}
$$

- Does P and D exist ? (Yes, if one uses basis functions)
- What symmetry requirements are needed ?
- How to construct P and D ?

Example

$$
\frac{d u_{j}}{d t}=D u_{j}, \quad D u_{j}= \begin{cases}D_{+} u_{j}, & j=0 \\ D_{0} u_{j}, & j \neq 0, N \\ D_{-} u_{j}, & j=N\end{cases}
$$

Choose scalar product: $(u, v)_{h}=\frac{h}{2} u_{0} v_{0}+h \sum_{j=1}^{N-1} u_{j} v_{j}+\frac{h}{2} u_{N} v_{N}$

$$
\begin{gathered}
(u, v)_{h}=u^{T} P v, \quad P=h \operatorname{diag}(1 / 2,1,1, \ldots, 1,1 / 2) \\
D=\frac{1}{h}\left[\begin{array}{ccccc}
-1 & 1 & 0 & & \\
-1 / 2 & 0 & 1 / 2 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 / 2 & 0 & 1 / 2 \\
& & & -1 & 1
\end{array}\right], P D=Q=\frac{1}{2}\left[\begin{array}{ccccc}
-1 & 1 & 0 & & \\
-1 & 0 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 0 & 1 \\
& & & -1 & 1
\end{array}\right]
\end{gathered}
$$

$$
Q+Q^{T}=\left[\begin{array}{ccccc}
-1 & 0 & 0 & & \\
0 & 0 & 0 & & \\
& \ddots & \ddots & \ddots & \\
& & 0 & 0 & 0 \\
& & 0 & 0 & 1
\end{array}\right]
$$

We get

$$
(u, D u)=u^{T} P D u=u^{T} Q u=u^{T}\left(\frac{Q+Q^{T}}{2}\right) u=\frac{1}{2}\left(u_{N}^{2}-u_{0}^{2}\right) .
$$

- Exactly the analytical result.
- Higher order approximations in the same way, but with more involved algebra.

High order SBP operators

P_{0}^{A}, Q_{0}^{A} are transposed along the anti-diagonal
Theorem ("block norm") For interior order of accuracy $2 S, P, Q$ exist such that $P=P^{T}>0, P_{0}=$ block matrix and $Q+Q^{T}=B$ with order 2S-1 near boundaries.
Theorem ("diagonal norm") For interior order of accuracy $2 S$, $1 \leq S \leq 5, P, Q$ exist such that $P=P^{T}>0, P_{0}=$ diagonal matrix, and $Q+Q^{T}=B$ with order S near boundaries.

The P matrix (or P norm) is an integration operator (both block and diagonal) of order $2 S=$ interior accuracy.
Let: ϕ smooth function, $\vec{\phi}=\phi$ injected at the grid points.
Then: $\frac{\partial \phi}{\partial x}$ smooth function, $\left(\frac{\vec{\phi}}{\partial x}\right)=\frac{\partial \phi}{\partial x}$ injected at the grid points.
Let $\overrightarrow{1}=(1,1, \ldots, 1,1)$. We get

$$
\begin{gathered}
\overrightarrow{1}^{T} P\left(\frac{\partial \vec{\phi}}{\partial x}\right)=\phi_{N}-\phi_{0}+O\left(h^{2 s}\right) \\
\overrightarrow{1}^{T} P\left(P^{-1} Q \vec{\phi}\right)=\overrightarrow{1}^{T} Q \vec{\phi}=\overrightarrow{1}^{T}\left[-Q^{T}+B\right] \vec{\phi}=-(Q \overrightarrow{1})^{T} \vec{\phi}+\phi_{N}-\phi_{0}
\end{gathered}
$$

- Integration operator of order 2 S .
- Exact "integration back" of the numerical derivative.

Construction of SBP operators

Symmetry requirements: make ansatz on elements, aim for

$$
P=P^{T}>0, Q+Q^{T}=\operatorname{diag}[-1,0,0, \ldots, 0,1] .
$$

Accuracy requirements:

$$
\begin{gathered}
P^{-1} Q \overrightarrow{1}=0, \quad Q \overrightarrow{1}=0 \\
P^{-1} Q \vec{x}=\overrightarrow{1}, \quad Q \vec{x}=P \overrightarrow{1} \\
P^{-1} Q \overrightarrow{x^{2}}=2 \vec{x}, \quad Q \overrightarrow{x^{2}}=2 P \vec{x} \\
\vdots \\
\vdots \\
\overrightarrow{1}=(1,1, \ldots, 1,1), \quad \vec{x}=(0, \Delta x, 2 \Delta x, \ldots 1), \quad \overrightarrow{x^{2}}=\left(0, \Delta x^{2}, \ldots, 1\right)
\end{gathered}
$$

- Solve for unknowns in P, Q using e.g. Maple.
- Non-unique operators, more unknowns than equations.
- Parameters modify bandwith, errors and spectral radius.

Summary: first derivative SBP operators

- SBP operators mimic Integration-by-Parts.
- $u_{x} \approx P^{-1} Q u, P=P^{T}>0, Q+Q^{T}=B$
- $u_{x x} \approx\left(P^{-1} Q\right)^{2} u$, (wide).
- $u_{x x} \approx P^{-1}(-A+B D), A+A^{T} \geq 0$ (compact)
- Diagonal norm operators most important.
- Numerical boundary conditions form SBP operators.
- SBP operators for "all" orders exist.
- References
- B. Strand, JCP 1994.
- M.H. Carpenter, J. Nordström \& D. Gottlieb JCP 1999.
- K. Mattsson \& J. Nordström, JCP 2004.
- M. Svärd \& J. Nordström, (Review) JCP 2013.

What about boundary conditions?

$$
u_{t}+a u_{x}=0, \quad u(0, t)=g(t)
$$

(i) Multiply with smooth function α and integrate.
$\int_{0}^{1} \alpha u_{t} d x+a \int_{0}^{1} \alpha u_{x} d x=0 \Rightarrow \int_{0}^{1} \alpha u_{t} d x+\left.a \alpha u\right|_{0} ^{1}-a \int_{0}^{1} \alpha_{x} u d x=0$
(ii) Change $u(0, t)$ to $g(t)$ (dG procedure) and integrate back.

$$
\int_{0}^{1} \alpha u_{t} d x+a \int_{0}^{1} \alpha u_{x}=\underbrace{-\alpha(0) a(u(0, t)-g)}_{\text {penalty term }}
$$

(iii) Stability? Change $\alpha \rightarrow u$ and integrate.

$$
\frac{d}{d t}\|u\|^{2}=a g^{2}-a u^{2}(1, t)-a(u(0, t)-g)^{2}
$$

More on boundary conditions

$$
P \vec{\alpha}_{t}+a Q \vec{\alpha}=0, \quad Q+Q^{T}=B \quad \Rightarrow \quad P \vec{\alpha}_{t}+a B \vec{\alpha}-a Q^{T} \vec{\alpha}=0 .
$$

dG trick: replace "what you have with what you like" $\alpha_{0} \rightarrow g(t)$.

$$
P \vec{\alpha}_{t}+a\left[\begin{array}{c}
-g(t) \\
0 \\
\vdots \\
\alpha_{N}
\end{array}\right]-a Q^{T} \vec{\alpha}=0, \quad \Rightarrow \quad P \vec{\alpha}_{t}+a Q \vec{\alpha}=\left[\begin{array}{c}
-a\left(\alpha_{0}-g(t)\right) \\
0 \\
\vdots \\
0
\end{array}\right] .
$$

- dG uses a weak penalty formulation.

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\left(\alpha^{T} P \alpha\right)+a \vec{\alpha}^{T}\left(\frac{Q+Q^{T}}{2}+\frac{Q-Q^{T}}{2}\right) \vec{\alpha}=-a \alpha_{0}\left(\alpha_{0}-g(t)\right) \quad \Rightarrow \\
\frac{d}{d t}\|\alpha\|_{P}^{2}=a\left(g(t)^{2}-\alpha_{N}^{2}\right)-a\left(\alpha_{0}-g(t)\right)^{2} .
\end{gathered}
$$

- dG is energy stable with optimally sharp energy estimates.

Weak boundary procedure - SAT

"Simultaneous Approximation Term"
How do we impose boundary conditions that lead to stability?

$$
u_{t}+a u_{x}=0, \quad u(0, t) \quad=g, \quad \Rightarrow \quad \frac{d}{d t}\|u\|^{2}=a g^{2}-a u^{2}(1, t)
$$

How do we mimic this discretely?

$$
u_{t}+a P^{-1} Q u=B\left(u_{0}-g\right), \text { RHS is accurate, but what is } B ?
$$

Energy
$u^{T} P u_{t}+a u^{T} Q u=u^{T} P B\left(u_{0}-g\right), \Rightarrow \frac{d}{d t}\|u\|_{P}^{2}=a u_{0}^{2}+2 u^{T} P B\left(u_{0}-g\right)-a u_{N}^{2}$
We need

$$
B T=a u_{0}^{2}+2 u^{T} P B\left(u_{0}-g\right) \leq a g^{2} .
$$

Let

$$
B\left(u_{0}-g\right)=\sigma P^{-1}\left(u_{0}-g\right) e_{0}, e_{0}=(1,0,0, \ldots, 0)^{T}, \sigma=\text { unknown. }
$$

This leads to

$$
\begin{aligned}
B T & =a u_{0}^{2}+2 \sigma u_{0}\left(u_{0}-g\right)=a g^{2}+\left[\begin{array}{c}
u_{0} \\
g
\end{array}\right]^{T}\left[\begin{array}{cc}
a+2 \sigma & -\sigma \\
-\sigma & -a
\end{array}\right]\left[\begin{array}{c}
u_{0} \\
g
\end{array}\right] \\
& =g^{2}-a\left(u_{0}-g\right)^{2}
\end{aligned}
$$

if $\sigma=-a$.

$$
\therefore \frac{d}{d t}\|u\|_{P}^{2}=a g^{2}-a u_{N}^{2}-a\left(u_{0}-g\right)^{2}
$$

\therefore "More stable than the IBVP".

SBP-SAT for advection-diffusion problems

$$
\left.\begin{array}{rlrl}
u_{t}+a u_{x} & =\epsilon u_{x x} ; & 0 \leq x & \leq 1, t \geq 0 \\
L_{0} u & =g_{0} & x & =0, t \geq 0 \\
L_{1} u & =g_{1} & x & =1, t \geq 0 \\
u(x, 0) & =f(x) & 0 \leq x & \leq 1, t \tag{4d}
\end{array}\right)
$$

Energy method for determining L_{0}, L_{1}. We consider $a, \epsilon>0$.

$$
\begin{aligned}
& \int_{0}^{1} u u_{t}+a u u_{x} d x=\epsilon \int_{0}^{1} u u_{x x} d x \Rightarrow\left(\|u\|^{2}=\int_{0}^{1} u^{2} d x\right) \\
& \frac{d}{d t}\|u\|^{2}+2 \epsilon\left\|u_{x}\right\|^{2}=\left(a u^{2}-2 \epsilon u u_{x}\right)_{0}-\left(a u^{2}-2 \epsilon u u_{x}\right)_{1}
\end{aligned}
$$

Note that

$$
B T=a u^{2}-2 \epsilon u u_{x}=a^{-1}\left[\left(a u-\epsilon u_{x}\right)^{2}-\left(\epsilon u_{x}\right)^{2}\right] .
$$

$$
B T=a^{-1}\left[\left(a u-\epsilon u_{x}\right)^{2}-\left(\epsilon u_{x}\right)^{2}\right]
$$

At $x=0$, let

$$
L_{0}=a-\epsilon \frac{\partial}{\partial x}
$$

At $x=1$, let

$$
L_{1}=\epsilon \frac{\partial}{\partial x}
$$

This leads to

$$
B T_{0}=a^{-1}\left[g_{0}^{2}-\left(\epsilon u_{x}\right)^{2}\right], \quad B T_{1}=a^{-1}\left[\left(a u-\epsilon u_{x}\right)^{2}-g_{1}^{2}\right]
$$

\therefore Well-posed boundary conditions with a bounded energy.

$$
\begin{align*}
u_{t}+a P^{-1} Q u=\epsilon P^{-1} Q u_{x} & +P^{-1} \sigma_{0}\left(a u_{0}-\epsilon\left(u_{x}\right)_{0}-g_{0}\right) e_{0}+ \\
& +P^{-1} \sigma_{1}\left(\epsilon\left(u_{x}\right)_{N}-g_{1}\right) e_{N} \tag{5}\\
u(0) & =f
\end{align*}
$$

The parameters σ_{0}, σ_{1} will be determined by stability requirements. We also used $u_{x}=P^{-1} Q u, e_{0}=(1,0,0, \ldots, 0)^{T}$, $e_{N}=(0,0, \ldots, 0,1)^{T}$.

Energy
$u^{T} P u_{t}+a u^{T} Q u=\epsilon u^{T} Q u_{x}+\sigma_{0} u_{0}\left(a u_{0}-\epsilon\left(u_{x}\right)_{0}-g_{0}\right)+\sigma_{1} u_{N}\left(\epsilon\left(u_{x}\right)_{N}-g_{1}\right)$
Add transpose of equation (6) to itself \Rightarrow

$$
\begin{equation*}
\underbrace{u^{T} P u_{t}+u_{t}^{T} P u}_{(1)}+\underbrace{a u^{T}\left(Q+Q^{T}\right) u}_{(2)}-\underbrace{\epsilon\left(u^{T} Q u_{x}+u_{x}^{T} Q^{T} u\right)}_{(3)}+2 B T \tag{7}
\end{equation*}
$$

$$
\begin{aligned}
&(1)=\frac{d}{d t}\left(u^{T} P u\right)=\frac{d}{d t}\left(\|u\|_{P}^{2}\right) \\
&(2)= a u^{T}\left(Q+Q^{T}\right) u=a u^{T} B u=a\left(u_{N}^{2}-u_{0}^{2}\right) \\
&(3)=\epsilon\left(u^{T} Q u_{x}+u_{x}^{T} Q^{T} u\right)=\epsilon\left(u^{T}\left(-Q^{T}+B\right) u_{x}+u_{x}^{T}(-Q+B) u\right) \\
&=-\epsilon\left(u^{T} Q^{T} u_{x}+u_{x}^{T} Q u\right)+\epsilon\left(u^{T} B u_{x}+u_{x}^{T} B u\right) \\
& u^{T} Q^{T} u_{x}+u_{x}^{T} Q u=2 u_{x}^{T} Q u=2 u_{x}^{T} P P^{-1} Q u=2 u_{x}^{T} P u_{x}=2 \epsilon\left\|u_{x}\right\|_{P}^{2} \\
& u^{T} B u_{x}+u_{x}^{T} B u=2 u^{T} B u_{x}=2 u_{N}\left(u_{x}\right)_{N}-2 u_{0}\left(u_{x}\right)_{0}
\end{aligned}
$$

$$
\therefore \frac{d}{d t}\|u\|^{2}+2 \epsilon\left\|u_{x}\right\|^{2}=\underbrace{\left(a u_{0}^{2}-2 \epsilon u_{0}\left(u_{x}\right)_{0}\right)-\left(a u_{N}^{2}-2 \epsilon u_{N}\left(u_{x}\right)_{N}\right)}
$$

from equation

$$
=\underbrace{2 \sigma_{0} u_{0}\left(a u_{0}-\epsilon\left(u_{x}\right)_{0}-g_{0}\right)+2 \sigma_{1} u_{N}\left(\epsilon\left(u_{x}\right)_{N}-g_{1}\right)}
$$

from penalty terms

Choose $\sigma_{0}=-1, \sigma_{1}=-1$ such that mixed the $u u_{x}$ terms cancel.

$$
\begin{aligned}
& \text { RHS }=-a u_{0}^{2}+2 u_{0} g_{0}-a u_{N}^{2}+2 u_{N} g_{1} \\
&=\frac{g_{0}^{2}}{a}-\underbrace{-\frac{g_{0}^{2}}{a}-a u_{0}^{2}+2 u_{0} g_{0}}_{-a^{-1}\left(a u_{0}-g_{0}\right)^{2}}+\frac{g_{1}^{2}}{a}-\underbrace{-\frac{g_{1}^{2}}{a}-a u_{N}^{2}+2 u_{N} g_{1}}_{-a^{-1}\left(a u_{N}-g_{1}\right)^{2}} \\
& \frac{d}{d t}\left(\|u\|_{P}^{2}\right)+2 \epsilon\left\|u_{x}\right\|_{P}^{2}=\frac{g_{0}^{2}}{a}-a^{-1}\left(a u_{0}-g_{0}\right)^{2}+\frac{g_{1}^{2}}{a}-a^{-1}\left(a u_{N}-g_{1}\right)^{2}
\end{aligned}
$$

\therefore Similar to the continuous energy estimate.

Summary of SAT procedure

- Find well-posed boundary conditions that lead to an energy estimate.
- Construct penalty/forcing terms that impose these boundary conditions.
- Choose penalty coefficient such that indefinite terms are removed.
- Aim for the same/similar estimate as in the continuous case.
- References
- JNO
- M. H. Carpenter, D. Gottlieb \& S. Abarbanel JCP 1994.
- M.H. Carpenter, J. Nordström \& D. Gottlieb JCP 1999.

Second derivative SBP operators

$$
\begin{equation*}
\left(u, u_{x x}\right)=\int_{0}^{1} u u_{x x} d x=\left.u u_{x}\right|_{1}-\left.u u_{x}\right|_{0}-\left\|u_{x}\right\|^{2} \tag{8}
\end{equation*}
$$

Can we construct operators that mimics (8)?
Yes, by for example using the first derivative twice.
$\left(u,\left(P^{-1} Q\right)^{2} u\right)=u^{T} Q u_{x}=u^{T}\left(-Q^{T}+B\right) u_{x}=u_{N}\left(u_{x}\right)_{N}-u_{0}\left(u_{x}\right)_{0}-\left\|u_{x}\right\|_{P}^{2}$
since

$$
-u^{T} Q^{T} u_{x}=-u^{T} Q^{T} P^{-1} P u_{x}=-\left(P^{-1} Q u\right)^{T} P u_{x}=-u_{x}^{T} P u_{x} .
$$

Drawbacks with wide operator $\left(P^{-1} Q\right)^{2}$

- Unnecessary wide which leads to large error constant.
- Bad damping of high wave-numbers, which the PDE have.

$$
\begin{array}{rl}
u_{t}=u_{x x} & u=\hat{u} e^{i \omega x} \Rightarrow \hat{u}_{t}=-\omega^{2} \hat{u} \\
\hat{u}_{j t}=D_{0} D_{0} u_{j} & \hat{u}=\hat{u} e^{i \omega x_{j}} \Rightarrow \hat{u}_{t}=-\frac{1}{h^{2}} \sin ^{2}(\xi) \hat{u} \\
u_{j t}=D_{+} D_{-} u_{j} \quad u=\hat{u} e^{i \omega x_{j}} \Rightarrow \hat{u}_{t}=-\frac{4}{h^{2}} \sin ^{2}(\xi / 2) \hat{u}
\end{array}
$$

For $\xi_{\max }=\pi$, there is no damping with the wide operator.

Compact second derivative SBP operator

Consider:

$$
\begin{aligned}
D^{(2)} & =\left(P^{-1} Q\right)^{2}=P^{-1}\left(Q P^{-1} Q\right)=P^{-1}\left(\left(-Q^{T}+B\right) P^{-1} Q\right)= \\
& =P^{-1}\left(-Q^{T} P^{-1} Q+B P^{-1} Q\right) \\
u^{T} P D^{(2)} u & =u^{T}\left(-Q^{T} P^{-1} Q+B P^{-1} Q\right)=-(Q u)^{T} P^{-1} Q u+u^{T} B D u \\
& =-\left(P^{-1} Q u\right)^{T} P\left(P^{-1} Q u\right)+u^{T} B D u= \\
& =-\|D u\|_{P}^{2}+u^{T} B D u . \text { A perfect stability result. }
\end{aligned}
$$

Can we make a compact version of this?
Yes! It has the structure:

$$
D^{(2)}=P^{-1}(-A+B D)
$$

Observations regarding $D^{(2)}=P^{-1}(-A+B D)$

- Compact, occupies same space as $P^{-1} Q$.
- $A+A^{T} \geq 0$ for stability.
- Clumsy to use for flux-based equations.

$$
F=A U-\epsilon\left(B_{11} D_{x} u+B_{12} D_{y} u\right) ; F_{x}=D_{x} F .
$$

- Certain stability problems for N -S equations since two different first derivatives appear.
The second order accurate operator is

$$
\begin{gathered}
D^{(2)}=\frac{1}{h^{2}}\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
1 & -2 & 1 & 0 \\
0 & 1 & -2 & 1 \\
& & & \ddots
\end{array}\right], \\
A=\frac{1}{h}\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & 1 & 0 \\
0 & 1 & -2 & 1 \\
& & & \ddots
\end{array}\right], \quad D=\frac{1}{h}\left[\begin{array}{cccc}
\frac{3}{2} & -2 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
& & & \ddots
\end{array}\right] .
\end{gathered}
$$

Exercises/Seminars

- Construct 2nd order SBP operator explicitly
- Prove that a diagonal P is a 2 S order accurate integration operator (hint: find the compatibility conditions).
- Derive boundary conditions for the wave equation.
- Show energy-estimates for the semi-discrete wave equation, using the boundary conditions above.

