Numerical Solution of Initial Boundary Value Problems

Jan Nordström
Division of Computational Mathematics
Department of Mathematics

Linköping University

Lecture 4

SBP-SAT for multi-block methods

$$
\begin{gathered}
u_{t}+a u_{x}=0 \quad \imath \quad v_{t}+a v_{x}=0 \\
x=0 \\
u=v
\end{gathered}
$$

Multiply with smooth function $(\phi(\pm \infty, t)=0)$ and integrate \Rightarrow

$$
\begin{aligned}
& \int_{-\infty}^{0} \phi u_{t}+a \phi u_{x} d x+\int_{0}^{\infty} \phi v_{t}+a \phi v_{x} d x=0 \Rightarrow \\
= & \int_{-\infty}^{0} \phi u_{t} d x+\int_{0}^{\infty} \phi v_{t} d x-\int_{-\infty}^{0} a \phi_{x} u d x-\int_{0}^{-\infty} a \phi_{x} v d x \\
& +\underbrace{a \phi_{0}(u-v)_{0}}_{=0}=0
\end{aligned}
$$

No remaining terms at the interface \Rightarrow conservation.

$$
\begin{aligned}
& u_{t}+a P_{L}^{-1} Q_{L} u=\sigma_{L} P_{L}^{-1}\left(u_{N}-v_{0}\right) e_{N}, \\
& v_{t}+a P_{R}^{-1} Q_{R} v=\sigma_{R} P_{R}^{-1}\left(v_{0}-u_{N}\right) e_{0} .
\end{aligned}
$$

Note that u_{N}, v_{0} are located at the same position in space.
Conservation: Multiply with smooth function ϕ and integrate.

$$
\begin{aligned}
& \phi^{T} P_{L} u_{t}+a \phi^{T} Q_{L} u=\sigma_{L} \phi_{N}\left(u_{N}-v_{0}\right) \\
& \phi^{T} P_{R} v_{t}+a \phi^{T} Q_{R} v=\sigma_{R} \phi_{0}\left(v_{0}-u_{N}\right)
\end{aligned}
$$

Numerical integration using SBP operators: $Q \rightarrow-Q^{T}+B \Rightarrow$

$$
\phi^{T} P_{L} u_{T}+\phi^{T} P_{R} v_{t}-a\left(P_{L}^{-1} Q_{L} \phi^{T}\right) P_{L} u-a\left(P_{R}^{-1} Q_{R} \phi\right)^{T} P_{R} u+
$$

mimic PDE terms

$$
\underbrace{-a \phi_{N} u_{N}+\sigma_{R} \phi_{N}\left(u_{N}-v_{0}\right)+a \phi_{0} v_{0}+\sigma_{R} \phi\left(v_{0}-u_{N}\right)}
$$

IT=interface terms that should vanish
Since ϕ smooth, we can factor out $\phi_{0}=\phi_{N} \Rightarrow$
$\mathrm{IT}=\phi_{0}\left(-a u_{N}+\sigma_{N}\left(u_{N}-v_{0}\right)+a v_{0}+\sigma_{0}\left(v_{0}-u_{N}\right)\right)=\phi_{0}\left(u_{N}-v_{0}\right)\left(\sigma_{L}-\sigma_{R}-a\right)$.
\therefore We have a conservative scheme if $\sigma_{L}=\sigma_{R}+a$.

Stability: Multiply with the solutions u, v and integrate \Rightarrow

$$
\begin{gathered}
u^{T} P_{L} u_{T}+v^{T} P_{R} v_{t}=-a u_{N}^{2}+a v_{0}^{2}+2 u_{N} \sigma_{L}\left(u_{N}-v_{0}\right)+2 v_{0} \sigma_{R}\left(v_{0}-u_{N}\right) \\
=\left[\begin{array}{c}
u_{N} \\
v_{0}
\end{array}\right]\left[\begin{array}{cc}
-a+2 \sigma_{L} & -\left(\sigma_{L}+\sigma_{R}\right) \\
-\left(\sigma_{L}+\sigma_{R}\right) & a+2 \sigma_{R}
\end{array}\right]\left[\begin{array}{c}
u_{N} \\
v_{0}
\end{array}\right] \\
\lambda_{1,2}=\sigma_{L}+\sigma_{R} \pm \sqrt{\left(\sigma_{L}+\sigma_{R}\right)^{2}+\left(\sigma_{L}-\sigma_{R}-a\right)^{2}} .
\end{gathered}
$$

We have eigenvalues $\lambda_{1,2} \leq 0$ if

$$
\begin{aligned}
\sigma_{L}+\sigma_{R} & \leq 0, \text { the stability condition } \sigma_{R} \leq-a / 2 \\
\sigma_{L}-\sigma_{R}-a & =0, \text { the conservation condition. }
\end{aligned}
$$

Note that the conservation condition is necessary for stability.

Summary of multi-block coupling

- Conservation is a natural component of a scheme, if the PDE is conservative (necessary for correct shock speed).
- SBP-SAT + demand of conservation \Rightarrow provide relation between penalty coefficients.
- Conservation necessary for stability (and dual consistency).
- Check for conservation first, next step stability.
- References
- M.H. Carpenter, J. Nordström, D. Gottlieb JCP 1999.
- J. Nordström et al JCP 2009.
- C. La Cognata \& J. Nordström BIT 2016.
- J. Nordström \& A. Ruggiu, JCP 2017.
- J. Nordström \& F. Ghasemi, JCP 2017.

Accuracy and error estimates

$$
u_{t}+u_{x}=0, \quad u(0, t)=g, \quad u(x, 0)=f
$$

Semi-discrete

$$
\begin{align*}
v_{t}+P^{-1} Q v & =\sigma P^{-1}\left(v_{0}-g\right) e_{0} \tag{1a}\\
v(0) & =f \tag{1b}
\end{align*}
$$

Insert analytical solution u into (1)

$$
\begin{align*}
u_{t}+P^{-1} Q u & =\sigma P^{-1}\left(u_{0}-g\right) e_{0}+T_{e} \tag{2a}\\
u(0) & =f \tag{2b}
\end{align*}
$$

$T_{e}=$ truncation error from $P^{-1} Q u=u_{x}+O\left(h^{p}\right)$
Note: No error from penalty term (with Dirichlet b.c.).
(2)-(1) with $u-v=e=$ error \Rightarrow

$$
\begin{align*}
e_{t}+P^{-1} Q e & =\sigma P^{-1} e_{0} e_{0}+T_{e} \tag{3a}\\
e(0) & =0 \tag{3b}
\end{align*}
$$

Solve (3) and the exact error is known.
Note: $e \neq T_{e} . T_{e}=$ source of error only, not the error itself.
Energy:

$$
\begin{gathered}
e^{T} P e_{t}+e^{T} Q e=\sigma e_{0}^{2}+e_{0}^{T} P T_{e} \Rightarrow \\
\left(\|e\|_{P}^{2}\right)_{t}=e_{0}^{2}(1+2 \sigma)-e_{N}^{2}+2 e^{T} P T_{e}
\end{gathered}
$$

Stability demands that $\sigma \leq-1 / 2$. Choose $\sigma=-1 \Rightarrow$

$$
\begin{equation*}
\frac{d}{d t}\|e\|^{2}=-\left(e_{0}^{2}+e_{N}^{2}\right)+2\left(e, T_{e}\right) \tag{4}
\end{equation*}
$$

A first crude estimate

$$
\begin{equation*}
\frac{d}{d t}\|e\|^{2}=-\left(e_{0}^{2}+e_{N}^{2}\right)+2\left(e, T_{e}\right) \leq \eta\|e\|^{2}+\frac{1}{\eta}\left\|T_{e}\right\|^{2} \tag{5}
\end{equation*}
$$

Multiply with integrating factor $e^{-\eta t}$ and integrate \Rightarrow

$$
\begin{equation*}
\|e\|^{2}=\leq \frac{1}{\eta} e^{-\eta t} \int_{0}^{t} e^{-\xi t}\left\|T_{e}\right\|^{2} d \xi=O\left(\left\|T_{e}\right\|^{2}\right) \tag{6}
\end{equation*}
$$

- The error is equal to the size of the truncation error.
- The truncation error large at boundaries and interface. SBP(S,2S) indicates error of order S.
- Laplace transform technique show that error often of order $S+R$, where $R=$ order of highest derivative in the IBVP.
- M. Svärd \& J. Nordström, JCP 2006.

A second crude estimate

$$
\begin{equation*}
\frac{d}{d t}\|e\|^{2}=-\left(e_{0}^{2}+e_{N}^{2}\right)+2\left(e, T_{e}\right) \leq 2\|e\|\left\|T_{e}\right\| \tag{7}
\end{equation*}
$$

Note now that $\frac{d}{d t}\|e\|^{2}=2\|e\| \frac{d}{d t}\|e\|$ which implies that (7) goes to

$$
\begin{equation*}
\frac{d}{d t}\|e\| \leq\left\|T_{e}\right\| \tag{8}
\end{equation*}
$$

- The relation (8) indicates a linear growth in time.
- Seemingly, long time integration of hyperbolic problems would lead to large errors.

A third more sharp estimate

$2\|e\|\|e\|_{t} \leq-\left(e_{0}^{2}+e_{N}^{2}\right)+2\|e\|\left\|T_{e}\right\| \Rightarrow\|e\|_{t} \leq \underbrace{-\left(\frac{e_{0}^{2}+e_{N}^{2}}{2\|e\|^{2}}\right)}_{-\eta(t)}\|e\|+\left\|T_{e}\right\|$
Note that $0<\eta(t)<1$. Let $\eta(t)=$ constant (can be relaxed).

$$
\begin{aligned}
& \|e(T)\| \leq e^{-\eta T} \int_{0}^{T} e^{\eta t}\left\|T_{e}\right\| d t \leq e^{-\eta t}\left\|T_{e}\right\|_{\max } \int_{0}^{T} e^{\eta t} d t \\
= & e^{-\eta t}\left\|T_{e}\right\|_{\max } \frac{\left(e^{\eta T}-1\right)}{\eta}=\left\|T_{e}\right\|_{\max } \frac{\left(1-e^{-\eta T}\right)}{\eta} \leq \frac{\left\|T_{e}\right\|_{\max }}{\eta}
\end{aligned}
$$

Summary of error estimates

- The error for finite time is of order $S+R$, where $S=$ internal accuracy and $\mathrm{R}=$ order of highest derivative.
- The standard error estimate give a linear error growth in time.
- A more refined error estimate where boundary effects are included, give a linear error growth in time.
- By mesh refinement, arbitrary accuracy at any future time.
- No linear growth in time for parabolic problems even if boundary procedure not optimal, easier problem.
- Reference: J. Nordström SISC 2007.
- Reference: D. Kopriva, J. Nordström, G. Gassner JSC 2017.
- Reference: J. Nordström, H. Frenander JSC 2018?

Exercises/Seminars

- Show that an errorbound exist for the heat equation, even in the periodic case. Use the Poincare estimate.
- Show that conservation require a modified interface condition if the wave speeds are different in the multi-block problem.
- Derive number and homogenous boundary conditions by using the rotational technique for

$$
u_{t}+a u_{x}=\epsilon u_{x x}=0, \quad 0 \leq x \leq 1, \quad a, \epsilon>0 .
$$

- Derive penalty terms for the above homogenous continuous problem by using the rotational technique.
- Derive penalty terms for the related homogenous semi-discrete problem by using the rotational technique.

Appendix: Old version of "Roadmap"

$$
\begin{align*}
u_{t}+A u_{x} & =0, x \geq 0 \tag{9a}\\
L u & =0, x=0 \tag{9b}\\
u(x, 0) & =f(x), x \geq 0 \tag{9c}
\end{align*}
$$

The matrix A is symmetric, and it is a model problem for wave propagation (elastic wave, Euler, Maxwell equations).

$$
\frac{d}{d t}\|u\|^{2}=u^{T} A u=\left(A=X \Lambda X^{T}\right)=\left(X^{T} u\right)^{T} \Lambda\left(X^{T} u\right)
$$

Characteristic boundary conditions: $\left(X^{T} u\right)_{i}=0, \lambda_{i}>0 \Rightarrow$

$$
\frac{d}{d t}\|u\|^{2}=u^{T} A u \leq 0, \quad \therefore \text { Maximally semi-bounded operator. }
$$

As an example, consider S-W equations in 1D: $\quad A=\left[\begin{array}{ccc}\bar{u} & 0 & \bar{c} \\ 0 & \bar{u} & 0 \\ \bar{c} & 0 & \bar{c}\end{array}\right]$.

$$
\frac{d}{d t}\|u\|^{2}=u^{T} A u=W^{T} \Lambda W=(\bar{u}+\bar{c}) w_{1}^{2}+\bar{u} w_{2}^{2}+(\bar{u}-\bar{c}) w_{3}^{2}
$$

where $W=X^{T} u$. Well-posed boundary conditions are

$$
L W=0, \quad L=\left[\begin{array}{ccc}
1 & 0 & -k \tag{6}\\
0 & 1 & 0
\end{array}\right]
$$

We find $\frac{d}{d t}\|u\|^{2}=\left[(u+c) k^{2}+(u-c)\right] w_{3}^{2} \leq 0$ if $|k| \leq \sqrt{\sqrt{\bar{c}-\bar{u}}+\bar{u}}$.
The B.C.'s can be written

$$
\begin{equation*}
L X^{T} u=0 \tag{7}
\end{equation*}
$$

Now, how to construct penalty matrices Σ such that

$$
\begin{equation*}
W^{T}\left(\Lambda+\Sigma L+(\Sigma L)^{T}\right) W \leq 0 ? \tag{8}
\end{equation*}
$$

Note: We need ΣL to have same size as Λ and A. This means that $[\Sigma]=L^{T}$, Try

$$
\begin{aligned}
& \Sigma L=\left[\begin{array}{ll}
\sigma_{1} & \sigma_{2} \\
\sigma_{3} & \sigma_{4} \\
\sigma_{5} & \sigma_{6}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -k \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
\sigma_{1} & \sigma_{2} & -\sigma_{1} k \\
\sigma_{3} & \sigma_{4} & -\sigma_{3} k \\
\sigma_{5} & \sigma_{6} & -\sigma_{5} k
\end{array}\right] \\
& \Sigma L+(\Sigma L)^{T}=\left[\begin{array}{ccc}
2 \sigma_{1} & \sigma_{2}+\sigma_{3} & \sigma_{5}-\sigma_{1} k \\
\sigma_{2}+\sigma_{3} & 2 \sigma_{4} & \sigma_{6}-\sigma_{3} k \\
\sigma_{5}-\sigma_{1} k & \sigma_{5}-\sigma_{3} k & -2 \sigma_{5} k
\end{array}\right]
\end{aligned}
$$

$\Lambda+\Sigma L+(\Sigma L)^{T}=$ diagonal $\Rightarrow \sigma_{2}+\sigma_{3}=\sigma_{3}-\sigma_{1} k=\sigma_{2}-\sigma_{3} k=0$. $\Lambda+\Sigma L+(\Sigma L)^{T} \leq 0 \Rightarrow$

$$
\begin{aligned}
2 \sigma_{1}+u+c & \leq 0 \\
2 \sigma_{4}+u & \leq 0 \\
-2 \sigma_{5} k+u-c & \leq 0 .
\end{aligned}
$$

We aim for a "perfect match" such that

$$
\frac{d}{d t}\|u\|_{P \otimes I}^{2}=\left[(\bar{u}+\bar{c}) k^{2}+(u-c)\right] w_{3}^{2}
$$

This implies

$$
\begin{gather*}
\sigma_{1}=-\frac{u+c}{2}, \quad \sigma_{4}=-\frac{u}{2}, \quad \sigma_{5}=-\frac{u+c}{2} k \\
\sigma_{2}=0, \quad \sigma_{3}=0, \\
\Sigma=\left[\begin{array}{cc}
\frac{u+c}{2} & 0 \\
0 & -\frac{u}{2} \\
\frac{u+c}{2} k & 0
\end{array}\right], \quad \Sigma L=\left[\begin{array}{ccc}
\frac{u+c}{2} & 0 & \frac{k(u+c)}{2} \\
0 & -\frac{u}{2} & 0 \\
\frac{k(u+c)}{2} & 0 & \frac{k^{2}(u+c)}{2}
\end{array}\right] \\
\Lambda+\Sigma L+(\Sigma L)^{T}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & k^{2}(u+c)+u-c
\end{array}\right] \leq 0 \tag{9}
\end{gather*}
$$

\therefore Exactly right! The Σ derived will be used in the SAT term.

$$
\begin{align*}
& \Lambda+\Sigma L+(\Sigma L)^{T} \leq 0 \Rightarrow X\left(\Lambda+\Sigma L+(\Sigma L)^{T}\right) X^{T} \leq 0 \Rightarrow \\
& A+\underbrace{X^{T} \Sigma L X}_{\tilde{\Sigma L}}+\underbrace{X^{T}(\Sigma L)^{T} X}_{\left(\tilde{\Sigma L}^{T}\right)} \leq 0 \tag{10}
\end{align*}
$$

What have we done?

- Found L such that $u^{T} A u \leq 0$ with minimal number of conditions, maximally semi-bounded operator.
- Formed $\Sigma L=$ linear combination of boundary conditions.
- Chosen ΣL such that we mimic the continuous estimate.
- Derivation in diagonalised system, easy, not necessary.
- Transformed ΣL in diagonalised system to $\tilde{\Sigma L}$.
- $\Sigma L, \tilde{\Sigma L}$ penalty matrices in the semi-discrete approximation.

The semi-discrete approximation

We will use so called Kronecker Products, defined below.

$$
A \otimes B=\left[\begin{array}{ccc}
a_{11} B & a_{12} B & \ldots \\
a_{21} B & & \\
& & \ddots
\end{array}\right]
$$

$(A \otimes B)(C \otimes D)=A C \otimes B D,(A \otimes B)^{T}=A^{T} \otimes B^{T}, \quad(A \otimes B)^{-1}=A^{-1} \otimes B^{-1}$
The scheme using SBP-SAT and Kronecker products is

$$
\begin{align*}
u_{t}+\left(P^{-1} Q \otimes A\right) u & =\left(P^{-1} E_{o} \otimes \tilde{\Sigma L}\right)(u-g) \\
u(0) & =f . \tag{11}
\end{align*}
$$

Energy with $g=0$ leads to

$$
\begin{equation*}
u^{T}(P \otimes I) u_{t}+u^{T}(Q \otimes A) U=u_{0}^{T} \tilde{\Sigma L} u_{0} \tag{12}
\end{equation*}
$$

Add transpose of (12) to itself \Rightarrow

$$
\underbrace{\left(u^{T}(P \otimes I) u\right)_{t}}_{\frac{d}{d t}\left(\|u\|_{P_{8 I}}^{2}\right)}+u^{T}(\underbrace{Q+Q^{T}}_{B} \otimes A) u=u_{0}^{T}\left(\tilde{\Sigma L}+(\tilde{\Sigma L})^{T}\right) u_{0} .
$$

We find

$$
\frac{d}{d t}\left(\|u\|_{P \otimes I}^{2}\right)=u_{0}^{T}\left(A+\tilde{\Sigma L}+(\tilde{\Sigma L})^{T}\right) u_{0} \leq 0
$$

by the previous derivation, see (10).
\therefore Energy stability follows automatically from well-posed boundary conditions.

Boundary procedures for parabolic problems

$$
\begin{align*}
u_{t}+A u_{x} & =\epsilon\left(B u_{x}\right)_{x}, x \geq 0 \\
L u & =0, x=0 \tag{13}\\
u(x, 0) & =f(x), x \geq 0 \\
\frac{d}{d t}\|u\|^{2}+2 \epsilon \int_{0}^{\infty} u_{x}^{T} B u_{x} d x & =u^{T} A u-\underbrace{\epsilon u^{T} B u_{x}-\epsilon u_{x}^{T} B u_{x}}_{\text {indefinite terms }}=B T
\end{align*}
$$

All boundary operators L must remove the indefinite terms \Rightarrow

$$
\begin{equation*}
L u=C u-\epsilon B u_{x}=0 . \tag{14}
\end{equation*}
$$

The relation (14) $\Rightarrow B T$ in estimate becomes

$$
B T=u^{T}\left(A-C-C^{T}\right) u .
$$

C must be determined such that:

- We impose correct nr. of boundary conditions (existence).
- $A-\left(C+C^{T}\right) \leq 0$ (energy estimate).

Assume this is done and that $L=C-\epsilon B \frac{\partial}{\partial x}$ is known.
What are the penalty coefficients such that

$$
B T=u^{T} A u-\epsilon u^{T} B u_{x}-\epsilon u_{x}^{T} B u+u^{T}\left(\Sigma L+(\Sigma L)^{T}\right) u \leq 0 ?
$$

Try $\Sigma=-I \Rightarrow B T=u^{T}\left(A-\left(C+C^{T}\right)\right) u \leq 0$.
Remark: This perfect scaling is due to the fact that i) we replace the indefinite term $u^{T} B u_{x}$ exactly by the boundary operator L, and ii) that L is a square matrix.

The SBP-SAT approximation is

$$
u_{t}+\left(P^{-1} Q \otimes A\right) u-\epsilon\left(P^{-1} Q \otimes B\right) u_{x}=[P^{-1} E_{0} \otimes \underbrace{(-I)}_{\Sigma}][\underbrace{(I \otimes C) u-\epsilon(I \otimes B) u_{x}}_{L U}] .
$$

Energy:
$u^{T}(P \otimes I) u_{t}+u^{T}(Q \otimes A) u-\epsilon u^{T}(Q \otimes B) u_{x}=-u_{0}^{T}\left(C u_{0}+\epsilon B\left(u_{x}\right)_{0}\right) u$.
Same technique as before \Rightarrow

$$
\begin{aligned}
\left(u^{T}(P \otimes I) u\right)_{t}+2 \epsilon\left(u_{x}^{T}(P \otimes I) u_{x}\right) & = \\
u_{0}^{T} A u_{0}-\epsilon u_{0}^{T} B\left(u_{x}\right)_{0}-\left(u_{x}\right)_{0}^{T} B u_{0} & -u_{0}^{T} C u_{0}+\epsilon u_{0}^{T} B\left(u_{x}\right)_{0} \\
& -u_{0}^{T} C^{T} u_{0}+\epsilon\left(u_{x}\right)_{0}^{T} B u_{0} \\
& =u_{0}^{T}\left(A-\left(C+C^{T}\right)\right) u_{0} \leq 0 .
\end{aligned}
$$

\therefore The well-posedness condition leads directly to stability.

Summary of SAT procedure

- Well-posed boundary conditions: $\mathrm{LW}=0$, that lead to an energy estimate for the PDE is necessary.
- With the boundary operator L known, construct $\tilde{\Sigma L}$ such that $A+\tilde{\Sigma L}+(\tilde{\Sigma L})^{T} \leq 0$.
- By using $\tilde{\Sigma L}$ as the penalty matrix in the numerical approximation, stability is obtained almost automatically.
- References
- M.H. Carpenter, J. Nordström, D. Gottlieb JCP 1999.
- J. Nordström et al JCP 2009.
- J. Berg, J. Nordström APNUM 2012.

