Numerical Solution of Initial Boundary Value
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SBP-SAT for multi-block methods

up+au, =0 0 v+av,=0
x=0

u=v
Multiply with smooth function (¢(+oo, t) = 0) and integrate =

0 00
f Quy + apuydx + f Qv + aduydx =0 =

00 0
0 00 0 —00

= f Pudx + f Qudx — f apudx — f apyvdx
—c0 0 —00 0

+apo(u —v)o =0
N—
=0

No remaining terms at the interface = conservation.



up +aP;'Quu = oL Py (un — vo)en,

v + EIPI_JQRZJ = URPZ_gl(UO — UN)eg.
Note that uy, vg are located at the same position in space.
Conservation: Multiply with smooth function ¢ and integrate.

T PLus +adpT Quu = o1.Pn(un — vo)

¢ Pros + apT Qro = or¢po(vo — un)



Numerical integration using SBP operators: Q — —QT + B =

@TPLMT + ¢TPRUt - a(PZlQquT)PLu - H(Pl_leR(i))TPRu+

mimic PDE terms

—apnun + orPN(un — vo) + apovy + orP(vo — UN)

IT=interface terms that should vanish

Since ¢ smooth, we can factor out ¢g = Py =
IT = ¢po(—aun+on(un—0vo)+avo+0o(vo—un)) = Po(un—10)(0L—0R—4).

.. We have a conservative scheme if 07, = og + 4 .



Stability: Multiply with the solutions u, v and integrate =
u'PLur + o' Proy = —au%\, + av% + 2unor(un — vg) + 2090r (Vg — UN)

_|UN —a + 207y, —(GL+GR) Uun
oo ||-(oL +0r) a+20r ||vo

)\1,2 =0 +0R =* \/(GL +(7R)2 + (GL — OR —LZ)Z.

We have eigenvalues A1, < 0 if

or +or <0, the stability condition og < —a/2.

o —ogr —a =0, the conservation condition.

Note that the conservation condition is necessary for stability.



Summary of multi-block coupling

e Conservation is a natural component of a scheme, if the
PDE is conservative (necessary for correct shock speed).

e SBP-SAT + demand of conservation = provide relation
between penalty coefficients.

e Conservation necessary for stability (and dual consistency).

e Check for conservation first, next step stability.
¢ References

e M.H. Carpenter, J. Nordstrom, D. Gottlieb JCP 1999.
e J. Nordstrom et al JCP 2009.

e C.La Cognata & J. Nordstrom BIT 2016.

e J. Nordstrom & A. Ruggiu, JCP 2017.

e J. Nordstrom & F. Ghasemi, JCP 2017.



Accuracy and error estimates

up+uy =0, u©0,t)=g, u(x,0)=f

Semi-discrete

v + P71Qu
v(0)

GP_l(UQ - 9)eo (1a)
f (1b)

Insert analytical solution u into (1)

up +P7'Qu = oP Yug - Qeo + T (2a)
u(0) = f (2b)

T, = truncation error from P~'Qu = u, + O(hP)

Note: No error from penalty term (with Dirichlet b.c.).



(2)-(1) with u — v = e = error =

e + P‘lQe = o*P_leoeo + T, (3a)
e(0)=0 (3b)

Solve (3) and the exact error is known.

Note: e # T,. T, = source of error only, not the error itself.

Energy:
e Pe; + e Qe = o¢% + ) PT, =

(lel?) = €2(1 + 20) — &%, + 2¢TPT,

Stability demands that 0 < —1/2. Choose 0 = -1 =

d
Eneu2 = —(¢5 +e3) +2(e, Te). 4)



A first crude estimate

d

1
gl =~ + ) + 2e, To) < lllf + JITE - (9)

Multiply with integrating factor ™" and integrate =

1., (.
llell> =< Ee ”tf e TIPdE = O(ITII?) (6)
0

The error is equal to the size of the truncation error.

The truncation error large at boundaries and interface.
SBP(S,2S) indicates error of order S.

Laplace transform technique show that error often of order
S+R, where R=order of highest derivative in the IBVP.

M. Svird & J. Nordstrom, JCP 2006.



A second crude estimate

4
dt
Note now that %Ilell2 = 2||e||%||e|| which implies that (7) goes to

lel® = —(e5 + ex) + 2(e, Te) < 2llellliTell @)

2 lell < T ®

e The relation (8) indicates a linear growth in time.

e Seemingly, long time integration of hyperbolic problems
would lead to large errors.



A third more sharp estimate

2 2
€O+€N

+ ||T,
2lelP ]Ilell [Tl
————

-1(t)

2 2
2lel] llellr = =(ey + ex,) + 2llell ITell = lells < —(

Note that 0 < n(t) < 1. Let n(t) = constant (can be relaxed).

T T
le(D)l < ™" f M| Telldt < e[| Tellmax f e dt
0 0

(e’IT B 1) (1 B E_UT) < ”Te”max

n

= e_nt”Te”max = || Tellmax




Summary of error estimates

The error for finite time is of order S+R, where S=internal
accuracy and R= order of highest derivative.

The standard error estimate give a linear error growth in
time.

A more refined error estimate where boundary effects are
included, give a linear error growth in time.

By mesh refinement, arbitrary accuracy at any future time.

No linear growth in time for parabolic problems even if
boundary procedure not optimal, easier problem.

Reference: J. Nordstrom SISC 2007.
Reference: D. Kopriva, J. Nordstrom, G. Gassner JSC 2017.
Reference: J. Nordstrém, H. Frenander JSC 2018?



Exercises/Seminars

Show that an errorbound exist for the heat equation, even
in the periodic case. Use the Poincare estimate.

Show that conservation require a modified interface
condition if the wave speeds are different in the
multi-block problem.

Derive number and homogenous boundary conditions by
using the rotational technique for

Ur+auy =€y =0, 0<x<1, ae>0.

Derive penalty terms for the above homogenous
continuous problem by using the rotational technique.

Derive penalty terms for the related homogenous
semi-discrete problem by using the rotational technique.



Appendix: Old version of "Roadmap”

ur+Au, =0, x>0 (9a)
Lu=0,x=0 (9b)
u(x,0)=f(x), x>0 (90)

The matrix A is symmetric, and it is a model problem for wave
propagation (elastic wave, Euler, Maxwell equations).

%Ilullz =ulAu = (A = XAX") = XTu)"A(X 1)

Characteristic boundary conditions: XTu); =0, A;>0=

illullz =uTAu <0, .. Maximally semi-bounded operator.



n 0 ¢
As an example, consider S-W equationsin1D: A =(0 @ O0f.
c 0 ¢
d
ElluHZ = u"Au = WTAW = (i + e)w] + fiw; + (il — O)w3,
where W = XTu. Well-posed boundary conditions are
1 0 -k
LW—O,L—[O 1 0] (6)
We find &ljul? = [(u + o)k% + (u - )| w} < 0if |k < /52,
The B.C.’s can be written
LX"u =0. (7)

Now, how to construct penalty matrices X such that

WIA+ XL+ L)Y W<0? (8)



Note: We need XL to have same size as A and A. This means
that [Z] = LT, Try

- o ol o _k ) o1 02 :015
—0304010—0304 03

05 Og 05 O¢ —(75](

201 0y +03 05— 01k]
YL+ L) =] 02 + 03 204 06 — 03k
05 — G1k 05 — ng —265]( ]

A+XL+ LT = diagonal = 0 + 03 = 03 — 01k = 0 — 03k = 0.
A+XL+(ELT<0=

200 +u+c<0
204+M§0
—205k+u—c<0.



We aim for a “perfect match” such that

d
Eﬂmng[m+am?+w—cﬂw§

This implies
o1 = U+c " u " __u+ck
1 - ) ’ 4 = 21 5— >
02:0/ 0320, 06:0
MTH 0 uT+C 0 k(u2+c)
=10 -3, XL=| O -3 0
utc k(u-+c) 2 (u+c)
<k 0 Mg g Ko
00 0
A+ZL+EL)T=[0 0 0 <0 9)

0 0 KPu+co+u-c

Exactly right! The X derived will be used in the SAT term.



A+ZL+ (LT <02 X(A+ZL+(EL)HX <0 =

A+ XToLX +XT(ZL)X <0 (10)
— —
YL (ELT)

What have we done?

e Found L such that uT Au < 0 with minimal number of
conditions, maximally semi-bounded operator.

e Formed XL = linear combination of boundary conditions.
e Chosen XL such that we mimic the continuous estimate.
e Derivation in diagonalised system, easy, not necessary.

e Transformed L in diagonalised system to XL.

e XL,YL penalty matrices in the semi-discrete approximation.



The semi-discrete approximation
We will use so called Kronecker Products, defined below.

LlllB ﬂ1zB

ﬂ21B
A®B: . 7

(A®B)(C®D) = AC®BD, (A®B)" = AT@B”, (A®B)™' = A"l@B!

The scheme using SBP-SAT and Kronecker products is

ur+(P'Q®Au = (P'E,® ZL)(u - g)
u(0) = f. (11)

Energy with ¢ = 0 leads to

ul(P® Duy + u (Q ® AU = ul XLu. (12)



Add transpose of (12) to itself =

@' (P ® u) +u" (Q + QT ®A)u = ul (EL + (ZL) uo.
N—— N——

2 (Il B

We tind p
= (IluliZg;) = ug (A + XL + (ZL) )uo <0,

by the previous derivation, see (10).

.. Energy stability follows automatically from well-posed
boundary conditions.



Boundary procedures for parabolic problems

U + Ay = €(By)y, x >0
Lu=0, x=0 (13)
u(x,0)=f(x), x>0

i||u||2 + 2¢ ulBuydx = u” Au — eu’ Bu, — eul Bu, = BT
dt 0 X X

indefinite terms

All boundary operators L must remove the indefinite terms =
Lu = Cu —€eBu, =0. (14)
The relation (14) = BT in estimate becomes

BT =u'(A-C-Chu.



C must be determined such that:

e We impose correct nr. of boundary conditions (existence).
e A—(C+CT) <0 (energy estimate).

Assume this is done and that L = C — GB% is known.

What are the penalty coefficients such that
BT = ulAu — eu’ Bu, — eul Bu + u"(ZL + (ZL))u <0 ?
TryZ=-1=BT=ul(A-(C+Ch)u<0.

Remark: This perfect scaling is due to the fact that i) we replace
the indefinite term u” Bu, exactly by the boundary operator L,
and ii) that L is a square matrix.



The SBP-SAT approximation is

u+ (P QRA)u—e(P~'Q@B)uy = [P'E)® (=I) [[(I ® C)u — (I ® B)uy].
——
X LU

Energy:
uT(P ® Duy + uT(Q ®A)u — euT(Q ® B)u, = —ug(Cuo + €B(uy)o)u.
Same technique as before =

(P ® Du); + 2e(ul(P ® Duy) =

ugAuo — eugB(ux)o - (ux)gBuo - uOTCuo + eugB(ux)o
- ugCTuo + e(ux)gBuo
=ul(A—(C+C)ug <0.

.. The well-posedness condition leads directly to stability.



Summary of SAT procedure

Well-posed boundary conditions: LW = 0, that lead to an
energy estimate for the PDE is necessary.

With the boundary operator L known, construct £L such
that A + XL + (XL)T < 0.

By using L as the penalty matrix in the numerical
approximation, stability is obtained almost automatically.

References

e M.H. Carpenter, J. Nordstrom, D. Gottlieb JCP 1999.
e J. Nordstrom et al JCP 2009.
e J. Berg, ]. Nordstrom APNUM 2012.



