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Formulation

We consider well-posed initial boundary value problems of the form,

ut + fx + gy = h1(x⃗, t), Lu = h2(x⃗, t) x⃗ ∈ δΩ, u(x⃗, 0) = h3(x⃗).

Both the finite difference and finite volume approximations lead to,

PU⃗t + QxF⃗ + QyG⃗ = H⃗1(h1) + H⃗2(Lu − h2), U⃗(0) = H⃗3. (0.1)
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Well posed problems

Definition 1. The initial boundary value problem with F=g=0 is well posed
if a unique smooth solution exists that satisfies the estimate

Definition 2. The initial boundary value problem is strongly well posed, if it 
is well-posed and satisfies
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Stable problems

Definition 3. The semi-discrete approximation with is stable
for every if the solution satisfies the estimate

Definition 4. The semi-discrete approximation is strongly stable, if it is 
stable and satisfies
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Initial observation

§ Well-posedness and Stability are similar concepts.
o Energy estimates required in both.
o Well-posedness additionally demand: 

uniqueness and existence.
§ Should be possible to develop most of the theory

on the continuous side.
o Easier to work with the continuous problems.
o When done, generalize to the discrete case.
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Nonlinear vs linear theory
§ The linear theory is complete.

o An energy estimate bounds the solution.
o Uniqueness and error estimates follows.
o Existence is given by using a minimal number of

boundary conditions.
§ The theory for ”almost linear” (smooth) nonlinear problems is 

complete.
o The linearization and localisation principles

§ The fully nonlinear theory is incomplete. 
o Energy (entropy) estimates bounds (maybe) the solution.
o Uniqueness, error estimates and existence are generally

not  known.
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Motivation and strategy
§ Well-posedness of the continuous problem is a 

fundamental requirement in numerical calculations
(otherwise, convergence to what?). 

§ Well-posedness depends almost only on the 
boundary/interface conditions.

§ Discretization techniques on SBP- SAT form (FD, 
FEM, SEM, DG, FR) add technical difficulties, not 
fundamental ones.

§ We focus on the PDE + boundary conditions and 
derive boundary procedures that lead to a well
posed continuous problem. 

§ Energy stability for the discrete approximation will
follow almost automatically. 
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The roadmap
1. The symmetrization: The energy method requires symmetric matrices such

that Integration-By-Parts (IBP) can be performed.
2. The continuous energy method: By multiplying with the solution, integrating

over the domain and using IBP, the energy rate involving an indefinite
boundary term is obtained.

3. The number of boundary conditions: The number of boundary conditions is 
equal to the number of eigenvalues with negative sign in the boundary term.

4. The form of the boundary conditions: The variables that correspond to
negative eigenvalues are specified in terms of the corresponding positive 
ones and data.

5. The weak implementation: The boundary conditions are imposed using
penalty terms such that the boundary term becomes negative semi-definite for 
zero boundary data.

6. The discrete approximation: The problem is discretized using Summation-
By-Parts (SBP) operators and penalty terms from the continuous problem.

7. The discrete energy method: Stability is proved by using the energy method
and making sure that the discrete energy rate mimics the continuous one.
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1. The symmetrization
Take a non-symmetric system of equations

Multiply with a symmetrizer S such that a symmetrized system is obtained:

Choose S such that: 

=

For more details, see: Abarbanel & Gottlieb JCP 1981 
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The prototype problem

Dij =

0 0 0 0 0
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F = D11Ux +D12Uy +D13Uz

An incompletely parabolic system of equations.

G = D21Ux +D22Uy +D23Uz

H = D31Ux +D32Uy +D33Uz
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2. The continuous energy method

How do we choose the boundary operator H to bound BT ?
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Blocking it up

⇒

Indefinite
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A rotation
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Block-diagonal to diagonal

⇒
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3. The number of boundary conditions

§ The number of boundary conditions is equal to the number of
negative entries in                                  

§ That number varies only with since the the total number of
entries in                                   is constant and equal to the 
number of eigenvalues in        . 

§ The number depends on the original matrices in the problem.
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The Navier-Stokes and Euler equations
§ In the Navier-Stokes 

equations,                              
and the number of boundary
conditions depends only on the 
direction of the flow, 

§ The fact that the number of
boundary conditions is 
independent of the speed (sub
or supersonic) of the flow is 
quite different from the case for 
the Euler equations.

§ In the limit of infinite Reynolds 
numbers we get the number of
boundary conditions for the 
Euler equations.  
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4. The form of the boundary conditions
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Specify the variables that can cause growth

Proposition 1. The general form of the boundary condition that bound BT and 
lead to well-posedness is

R is a matrix with the number of rows equal to the number of boundary
conditions and g is given boundary data.  

In terms of the original formulation, we have:

W − = RW + + g

H −U =W −, H +U =W +HU = (H − − RH + )U,

Remark: The boundary operator H depends on the original matrices in the problem.
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Strong homogeneous boundary conditions

Proof of Proposition 1: The right-hand-side is bounded if R such that

Remark: For strongly imposed boundary conditions, some variables are 
replaced. Here for example only is present.W +
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5. The weak implementation

Introduce such thatΣ Σ = (H − )TΛ− ⇒

Proof of Proposition 1. The right-hand-side is bounded.
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Weak homogeneous boundary conditions

Remark: The weak imposition of boundary conditions produces the 
strong energy estimate with an additional damping term. 

Remark: For weakly imposed boundary conditions, all variables
are kept and present in the energy estimate.
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Strong non-homogeneous boundary conditions

Add and subtract where is a positive definite bounded matrix

We have an estimate in terms of data if:
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Weak non-homogeneous boundary conditions

Σ = (H − )TΛ−Introduce ⇒
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Weak non-homogeneous boundary conditions

The second and third matrices OK from strong analysis. Must make sure that
the first matrix is positive semi-definite.

=

C0 has eigenvalues (-3,0,0) and hence the first matrix is positive semi-definite.  
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Weak non-homogeneous boundary conditions
The rest term due to the first matrix (the deviation from the strong case) is:

=
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Strong and weak non-homogeneous boundary
conditions

The results for the homogeneous cases generalize to the 
non-homogenous cases. However, we must strengthen
the condition on R to

Remark: The weak imposition of boundary conditions
produces the strong energy estimate with an additional
damping term. 
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Differences and similarities between weak and 
strong boundary conditions

§ For strongly imposed boundary conditions, 
some variables are replaced in the energy
estimate. 

§ For weakly imposed boundary conditions, all 
variables are present in the energy estimate.

§ Weak boundary conditions produce strong 
energy estimates with an additional damping
term. 
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6. The discrete approximation 

With the weak
penalty term at 
x=1, i=N.
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7. The discrete energy method
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Weak homogeneous boundary conditions
The ”continuous” choice ⇒

Remark: The same result as in the continuous case, with an additional term 
that adds a small amount of dissipation.

Compare with the continuous estimate.

Σ = (H − )T (I ⊗Λ− )
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Weak non-homogeneous boundary conditions

All the results generalize: ⇒
Proposition 2. The semi-discrete approximation with weak homogeneous or 
non-homogeneous boundary conditions and the same penalty matrix as in the 
continuous case, is stable or strongly stable.

Remark:. The derivation in the weak cases is completely analogous to the 
continuous derivation. Both the boundary conditions and the penalty matrix are 
already derived.

Remark: The discrete estimates mimic the continuous ones term by term, and 
the approximations are stable. This implies strict stability, i.e. the discrete
energy grows or decays with the same rate as the continuous one.

Σ = (H − )T (I ⊗Λ− )
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Summary and conclusions

§ We have provided ”A Roadmap for Well Posed and 
Stable Problems in Computational Physics”. 

§ It is valid for most (if not all) problems in 
computational physics.

§ The general boundary conditions lead to strongly
well posed problems both for the weak and strong 
imposition.

§ The well-posedness analysis lead directly to energy-
stability of numerical approximations on SBP-SAT 
form. 

§ The key to a good numerical method is knowledge of
well-posedness of the PDE!
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