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Approximations in Time

• Basic theory
• Explicit Runge-Kutta methods
• Dual time-stepping
• Implicit vs explicit
• Summation-by-parts in time



Basic Theory
General linear PDE:

ut = P(∂/∂x)u (1)

Discretize in space and time separately (method of lines):

Ut = QU (2)

(Q is obtained by discretizing the PDE in space, including
boundary conditions. Coupled space-time discretizations are
also possible - e.g. Lax-Wendroff scheme, not the focus here).

Stability: Assume that Q can be diagonalized as T−1QT = Λ.

Test equation:
ut = λu. (3)

If a time stepping scheme applied to (3) is stable for all
eigenvalues λ of Q, then it is stable also for (2).



Basic Theory

Ex: un+1
−un

∆t = λun (explicit), un+1
−un

∆t = λun+1 (implicit).

Explicit methods in general stable if

i) Real(λ) ≤ 0 (Petrowski) and

ii) |∆tλ| sufficiently small (Von Neumann).

Centered approx. for first order PDE ⇒ Imag(λ) ∼ 1
∆x

Centered approx. for second order PDE⇒ Real(λ) ∼ 1
∆x2

Implicit methods are often stable for all ∆t (A-stability).



A and L stability

Def: A-stability: |un+1
| < |un

| for all Real(λ) ≤ 0, all ∆t > 0.

Sometimes A-stability is not good enough, no damping of
non-physical oscillations.

Def: L-stability: An A-stable method is also called L-stable if

|un+1
|

|un|
→ 0 as |∆tλ| → ∞.



A and L stability
Ex: The θ-method

un+1
− un

∆t
= λ(θun+1 + (1 − θ)un).

un+1 =
1 + ∆tλ(1 − θ)

1 − ∆tλθ︸            ︷︷            ︸
Z

un

|Z(∆tλ)| ≤ 1 for all Real(∆tλ) ≤ 0 ⇒ A-stable, all θ

Let ∆tλ→∞⇒ |Z| = |1−θθ |

θ = 1, Backward Euler, O(∆t), L-stable
θ = 1/2, Trapezoidal, O(∆t2), not L-stable



Runge-Kutta methods

du
dt

= F(t,u)

• R-K are one-step methods, no start-up problems.
• s intermediate ”stages” computed at each time step.
• F(t,u) evaluated in each stage.

Explicit R-K (ERK):

k1 = F(tn,un)
k2 = F(tn + c2∆t,un + ∆ta21k1)
k3 = F(tn + c3∆t,un + ∆t(a31k1 + a32k2))
. . .

ks = F(tn + cs∆t + ∆t(as1k1 + ... + as,s−1ks−1))

un+1 = un + ∆t(b1k1 + ... + bsks)



Runge-Kutta methods
A one-step method applied to test eq. leads to un+1 = Z(λ∆t)un.
(Z polynomial (explicit) or rational (implicit) appr. of eλ∆t)

Stability region: All µ in the complex plane such that |Z(µ)| ≤ 1.

Ex: un+1 = Z(µ)un = ( 1 + µ︸︷︷︸
Forward Euler

+µ2/2!

︸                 ︷︷                 ︸
Huen’s method

+µ3/3! + µ4/4!

︸                                      ︷︷                                      ︸
Classical RK4

)un



Dual time-stepping

Assume we want to solve a transient system using an implicit
scheme.

Ut + Q(U) = F. (4)

E.g. Euler backward⇒

Un+1
−Un

∆t
+ Q(Un+1) = Fn+1 (5)

How do we solve (5) for Un+1 without solving a complicated
nonlinear equation? Trick: Let U∗ = Un+1, add ∂U∗

∂τ to (4)⇒

∂U∗

∂τ
+

U∗

∆t
+ Q(U∗)︸        ︷︷        ︸
Q̃(U∗)

= Fn+1 +
Un

∆t︸      ︷︷      ︸
F̃

(6)

Can be integrated using a fast steady-state solver.



Explicit vs. Implicit Methods

• Explicit Methods
• + Simplicity
• + Easy to program
• + No system to solve
• – Small time-steps for stiff problems

• Implicit Methods
• + Large time-steps allowed
• + Fast for steady-state
• – Complicated

• Research fields
• – IMEX
• – Implicit for large nonlinear equations
• – Methods for bounded error growth
• – SBP-SAT in time



SBP-SAT in time: the first derivative

Consider the scalar constant coefficient problem:

ut + λu = 0, 0 ≤ t ≤ T, (7)

where λ is a real constant. The energy estimate with u(0) = f is

u(T)2 + 2λ‖u‖2L2
= f 2, (8)

where the L2 norm is defined as ‖u‖2L2
=
∫ T

0 u2dt.

The fully discrete approximation of (7) becomes

~ut + λ~u = P−1τ(u0 − f )~e0, (9)

where
~ut = D1~u = P−1Q~u. (10)



SBP-SAT in time: the first derivative
By choosing τ = −1 and applying the discrete energy method to
(9) we find

u2
N + 2λ‖~u‖2P = f 2

− (u0 − f )2, (11)

where ‖~u‖2P = ~uTP~u. The estimate (11) mimics the continuous
target (8), only introducing a small additional damping term.

The SBP-SAT first derivative formulation is unconditionally
stable (arbitrary ∆t) and high order accurate.

The time interval can be divided into an arbitrary number of
subdomains, allowing for a multi-stage formulation of the
method with reduced number of unknowns.

The multi-stage formulation superconverges at each final
multi-stage time. For an SBP-SAT approximation of order
(p,2p) with diagonal norm, the full 2p order is obtained.



SBP-SAT in time: the second derivative

We extend the scalar constant coefficient case to the second
order equation:

utt + α2ut + β2u = 0, 0 ≤ t ≤ T (12)

where α2 and β2 are positive real constants. Given two initial
conditions u(0) = f and ut(0) = g

ut(T)2 + β2u(T)2 + 2α2
‖ut‖

2
L2

= g2 + β2f 2, (13)

is found, which is the target for our discrete energy estimate.

We can impose ut(0) = g in the usual manner. However,
implementing u(0) = f is more complicated and needs careful
treatment.



SBP-SAT in time: the second derivative

We transform (12) into a system of first order differential
equations. Setting ut = v and applying the SBP-SAT technique
for the first derivatives yield

D1~u − ~v = P−1τ0(u0 − f )~e0

D1~v + α2~v + β2~u = P−1τ0t(v0 − g)~e0.
(14)

The first equation in (14) above can be used to define a
modified discrete first derivative, with the weak SAT condition
added to it. Indeed, we let ~̃ut = ~v, which gives

~̃ut = ~ut − P−1τ0(u0 − f )~e0, (15)

where ~ut = D1~u as in (10). Note also that the modified discrete
first derivative ~̃ut has the same order of accuracy as ~ut.



SBP-SAT in time: the second derivative
Inserting (15) into the second equation in (14), leads to

~̃utt + α2~̃ut + β2~u = P−1τ0t((ũ0)t − g)~e0, (16)

where the modified discrete second derivative is defined by
applying the first derivative operator again on ~̃ut:

~̃utt = D1~̃ut. (17)

With the choice τ0 = τ0t = −1, the discrete energy method gives

((ũN)t)2+β2u2
N+2α2

‖~̃ut‖
2
P = h2+β2f 2

−((ũ0)t−g)2
−β2(u0−f )2, (18)

which is very similar to the continuous estimate (13).

In a boundary value problem with u = f , u = g posed at
different boundaries, the standard SBP-SAT technique could
have been used.



Summary of SBP-SAT in time

• First derivative
• + High order accurate
• + Unconditionally stable
• + Superconverging at last time step
• + Fully discrete energy estimates
• + Preserves nonlinear stability
• – Large system to solve

• Second derivative
• + High order accurate
• + Unconditionally stable
• + Fully discrete energy estimates
• – Large system to solve
• – Wide operators for initial value problems



Exercises/Seminars

• Discretise the advection-diffusion equation, and prove
stability, first semi-discrete, next fully discrete, using SBP
in time.

• Discretise the initial value problem for the wave equation,
and prove stability, first semi-discrete, next fully discrete,
using SBP in time.

• Discretise the boundary value problem for the wave
equation, and prove stability, first semi-discrete, next fully
discrete, using SBP in time.

• Prove that SBP in time preserves semi-discrete stablity.


