Numerical Solution of Initial Boundary Value Problems

Jan Nordström
Division of Computational Mathematics
Department of Mathematics

Linköping University

Lecture 6

Approximations in Time

- Basic theory
- Explicit Runge-Kutta methods
- Dual time-stepping
- Implicit vs explicit
- Summation-by-parts in time

Basic Theory

General linear PDE:

$$
\begin{equation*}
u_{t}=P(\partial / \partial x) u \tag{1}
\end{equation*}
$$

Discretize in space and time separately (method of lines):

$$
\begin{equation*}
U_{t}=Q U \tag{2}
\end{equation*}
$$

(Q is obtained by discretizing the PDE in space, including boundary conditions. Coupled space-time discretizations are also possible - e.g. Lax-Wendroff scheme, not the focus here).

Stability: Assume that Q can be diagonalized as $T^{-1} Q T=\Lambda$.
Test equation:

$$
\begin{equation*}
u_{t}=\lambda u . \tag{3}
\end{equation*}
$$

If a time stepping scheme applied to (3) is stable for all eigenvalues λ of Q, then it is stable also for (2).

Basic Theory

Ex: $\quad \frac{u^{n+1}-u^{n}}{\Delta t}=\lambda u^{n}$ (explicit), $\frac{u^{n+1}-u^{n}}{\Delta t}=\lambda u^{n+1}$ (implicit).
Explicit methods in general stable if
i) $\operatorname{Real}(\lambda) \leq 0$ (Petrowski) and
ii) $|\Delta t \lambda|$ sufficiently small (Von Neumann).

Centered approx. for first order PDE $\quad \Rightarrow \operatorname{Imag}(\lambda) \sim \frac{1}{\Delta x}$ Centered approx. for second order $\operatorname{PDE} \Rightarrow \operatorname{Real}(\lambda) \sim \frac{1}{\Delta x^{2}}$

Implicit methods are often stable for all Δt (A-stability).

A and L stability

Def: A-stability: $\quad\left|u^{n+1}\right|<\left|u^{n}\right|$ for all $\operatorname{Real}(\lambda) \leq 0$, all $\Delta t>0$.
Sometimes A-stability is not good enough, no damping of non-physical oscillations.

Def: L-stability: An A-stable method is also called L-stable if

$$
\frac{\left|u^{n+1}\right|}{\left|u^{n}\right|} \rightarrow 0 \quad \text { as } \quad|\Delta t \lambda| \rightarrow \infty
$$

A and L stability

Ex: The θ-method

$$
\begin{aligned}
\frac{u^{n+1}-u^{n}}{\Delta t} & =\lambda\left(\theta u^{n+1}+(1-\theta) u^{n}\right) . \\
u^{n+1} & =\underbrace{\frac{1+\Delta t \lambda(1-\theta)}{1-\Delta t \lambda \theta}}_{\mathrm{Z}} u^{n}
\end{aligned}
$$

$|Z(\Delta t \lambda)| \leq 1$ for all $\operatorname{Real}(\Delta t \lambda) \leq 0 \quad \Rightarrow \quad$ A-stable, all θ
Let $\Delta t \lambda \rightarrow \infty \Rightarrow|Z|=\left|\frac{1-\theta}{\theta}\right|$
$\theta=1$, Backward Euler, $O(\Delta t)$, L-stable
$\theta=1 / 2$, Trapezoidal, $\quad O\left(\Delta t^{2}\right)$, not L-stable

Runge-Kutta methods

$$
\frac{d u}{d t}=F(t, u)
$$

- R-K are one-step methods, no start-up problems.
- s intermediate "stages" computed at each time step.
- $F(t, u)$ evaluated in each stage.

Explicit R-K (ERK):

$$
\begin{aligned}
k_{1} & =F\left(t_{n}, u^{n}\right) \\
k_{2} & =F\left(t_{n}+c_{2} \Delta t, u_{n}+\Delta t a_{21} k_{1}\right) \\
k_{3} & =F\left(t_{n}+c_{3} \Delta t, u_{n}+\Delta t\left(a_{31} k_{1}+a_{32} k_{2}\right)\right) \\
& \ldots \\
k_{s} & =F\left(t_{n}+c_{s} \Delta t+\Delta t\left(a_{s 1} k_{1}+\ldots+a_{s, s-1} k_{s-1}\right)\right) \\
u^{n+1} & =u^{n}+\Delta t\left(b_{1} k_{1}+\ldots+b_{s} k_{s}\right)
\end{aligned}
$$

Runge-Kutta methods

A one-step method applied to test eq. leads to $u^{n+1}=Z(\lambda \Delta t) u^{n}$. (Z polynomial (explicit) or rational (implicit) appr. of $e^{\lambda \Delta t}$)

Stability region: All μ in the complex plane such that $|Z(\mu)| \leq 1$.
Ex: $u^{n+1}=Z(\mu) u^{n}=\left(\quad 1+\mu \quad+\mu^{2} / 2!+\mu^{3} / 3!+\mu^{4} / 4!\right) u^{n}$

Forward Euler
Huen's method

Classical RK4

Dual time-stepping

Assume we want to solve a transient system using an implicit scheme.

$$
\begin{equation*}
U_{t}+Q(U)=F \tag{4}
\end{equation*}
$$

E.g. Euler backward \Rightarrow

$$
\begin{equation*}
\frac{U^{n+1}-U^{n}}{\Delta t}+Q\left(U^{n+1}\right)=F^{n+1} \tag{5}
\end{equation*}
$$

How do we solve (5) for U^{n+1} without solving a complicated nonlinear equation? Trick: Let $U^{*}=U^{n+1}$, add $\frac{\partial U^{*}}{\partial \tau}$ to $(4) \Rightarrow$

$$
\begin{equation*}
\frac{\partial U^{*}}{\partial \tau}+\underbrace{\frac{U^{*}}{\Delta t}+Q\left(U^{*}\right)}_{\tilde{Q}\left(U^{*}\right)}=\underbrace{F^{n+1}+\frac{U^{n}}{\Delta t}}_{\tilde{F}} \tag{6}
\end{equation*}
$$

Can be integrated using a fast steady-state solver.

Explicit vs. Implicit Methods

- Explicit Methods
- + Simplicity
- + Easy to program
- + No system to solve
- - Small time-steps for stiff problems
- Implicit Methods
- + Large time-steps allowed
- + Fast for steady-state
- - Complicated
- Research fields
- - IMEX
- - Implicit for large nonlinear equations
- - Methods for bounded error growth
- - SBP-SAT in time

SBP-SAT in time: the first derivative

Consider the scalar constant coefficient problem:

$$
\begin{equation*}
u_{t}+\lambda u=0, \quad 0 \leq t \leq T, \tag{7}
\end{equation*}
$$

where λ is a real constant. The energy estimate with $u(0)=f$ is

$$
\begin{equation*}
u(T)^{2}+2 \lambda\|u\|_{L_{2}}^{2}=f^{2}, \tag{8}
\end{equation*}
$$

where the L_{2} norm is defined as $\|u\|_{L_{2}}^{2}=\int_{0}^{T} u^{2} \mathrm{~d} t$.
The fully discrete approximation of (7) becomes

$$
\begin{equation*}
\vec{u}_{t}+\lambda \vec{u}=P^{-1} \tau\left(u_{0}-f\right) \vec{e}_{0} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\vec{u}_{t}=D_{1} \vec{u}=P^{-1} Q \vec{u} . \tag{10}
\end{equation*}
$$

SBP-SAT in time: the first derivative

By choosing $\tau=-1$ and applying the discrete energy method to (9) we find

$$
\begin{equation*}
u_{N}^{2}+2 \lambda\|\vec{u}\|_{P}^{2}=f^{2}-\left(u_{0}-f\right)^{2}, \tag{11}
\end{equation*}
$$

where $\|\vec{u}\|_{P}^{2}=\vec{u}^{T} P \vec{u}$. The estimate (11) mimics the continuous target (8), only introducing a small additional damping term.

The SBP-SAT first derivative formulation is unconditionally stable (arbitrary Δt) and high order accurate.

The time interval can be divided into an arbitrary number of subdomains, allowing for a multi-stage formulation of the method with reduced number of unknowns.

The multi-stage formulation superconverges at each final multi-stage time. For an SBP-SAT approximation of order ($\mathrm{p}, 2 \mathrm{p}$) with diagonal norm, the full 2 p order is obtained.

SBP-SAT in time: the second derivative

We extend the scalar constant coefficient case to the second order equation:

$$
\begin{equation*}
u_{t t}+\alpha^{2} u_{t}+\beta^{2} u=0, \quad 0 \leq t \leq T \tag{12}
\end{equation*}
$$

where α^{2} and β^{2} are positive real constants. Given two initial conditions $u(0)=f$ and $u_{t}(0)=g$

$$
\begin{equation*}
u_{t}(T)^{2}+\beta^{2} u(T)^{2}+2 \alpha^{2}\left\|u_{t}\right\|_{L_{2}}^{2}=g^{2}+\beta^{2} f^{2} \tag{13}
\end{equation*}
$$

is found, which is the target for our discrete energy estimate.
We can impose $u_{t}(0)=g$ in the usual manner. However, implementing $u(0)=f$ is more complicated and needs careful treatment.

SBP-SAT in time: the second derivative

We transform (12) into a system of first order differential equations. Setting $u_{t}=v$ and applying the SBP-SAT technique for the first derivatives yield

$$
\begin{align*}
D_{1} \vec{u}-\vec{v} & =P^{-1} \tau_{0}\left(u_{0}-f\right) \vec{e}_{0} \\
D_{1} \vec{v}+\alpha^{2} \vec{v}+\beta^{2} \vec{u} & =P^{-1} \tau_{0 t}\left(v_{0}-g\right) \vec{e}_{0} \tag{14}
\end{align*}
$$

The first equation in (14) above can be used to define a modified discrete first derivative, with the weak SAT condition added to it. Indeed, we let $\tilde{\vec{u}}_{t}=\vec{v}$, which gives

$$
\begin{equation*}
\tilde{\vec{u}}_{t}=\vec{u}_{t}-P^{-1} \tau_{0}\left(u_{0}-f\right) \vec{e}_{0}, \tag{15}
\end{equation*}
$$

where $\vec{u}_{t}=D_{1} \vec{u}$ as in (10). Note also that the modified discrete first derivative $\tilde{\vec{u}}_{t}$ has the same order of accuracy as \vec{u}_{t}.

SBP-SAT in time: the second derivative

Inserting (15) into the second equation in (14), leads to

$$
\begin{equation*}
\tilde{\vec{u}}_{t t}+\alpha^{2} \tilde{\vec{u}}_{t}+\beta^{2} \vec{u}=P^{-1} \tau_{0 t}\left(\left(\tilde{u}_{0}\right)_{t}-g\right) \vec{e}_{0} \tag{16}
\end{equation*}
$$

where the modified discrete second derivative is defined by applying the first derivative operator again on $\tilde{\vec{u}}_{t}$:

$$
\begin{equation*}
\tilde{\vec{u}}_{t t}=D_{1} \tilde{\vec{u}}_{t} . \tag{17}
\end{equation*}
$$

With the choice $\tau_{0}=\tau_{0 t}=-1$, the discrete energy method gives

$$
\begin{equation*}
\left(\left(\tilde{u}_{N}\right)_{t}\right)^{2}+\beta^{2} u_{N}^{2}+2 \alpha^{2}\|\tilde{\vec{u}}\|_{P}^{2}=h^{2}+\beta^{2} f^{2}-\left(\left(\tilde{u}_{0}\right)_{t}-g\right)^{2}-\beta^{2}\left(u_{0}-f\right)^{2}, \tag{18}
\end{equation*}
$$

which is very similar to the continuous estimate (13).
In a boundary value problem with $u=f, u=g$ posed at different boundaries, the standard SBP-SAT technique could have been used.

Summary of SBP-SAT in time

- First derivative
- + High order accurate
- + Unconditionally stable
- + Superconverging at last time step
- + Fully discrete energy estimates
- + Preserves nonlinear stability
- - Large system to solve
- Second derivative
- + High order accurate
- + Unconditionally stable
- + Fully discrete energy estimates
- - Large system to solve
- - Wide operators for initial value problems

Exercises/Seminars

- Discretise the advection-diffusion equation, and prove stability, first semi-discrete, next fully discrete, using SBP in time.
- Discretise the initial value problem for the wave equation, and prove stability, first semi-discrete, next fully discrete, using SBP in time.
- Discretise the boundary value problem for the wave equation, and prove stability, first semi-discrete, next fully discrete, using SBP in time.
- Prove that SBP in time preserves semi-discrete stablity.

