MAI0126 TOPOLOGICAL COMBINATORICS, 2014 PROBLEM SET 1/2

UPDATED 2014-10-17; FINAL VERSION

Each problem is worth five points. You may get partial credit for non-useless, non-perfect solutions. The problems are not ordered by difficulty. Please hand in your solutions no later than November 6.
1.1. Consider the statement "Suppose $f: B^{n} \rightarrow \mathbb{R}^{n}$ is continuous and antipodal on the boundary ∂B^{n}. Then, $f(x)=0$ for some $x \in B^{n}$." Prove that it is equivalent to the Borsuk-Ulam theorem.
1.2. Consider the statement "Suppose $f: S^{n} \rightarrow S^{n-1}$ is continuous. Then, there exists some $x \in S^{n}$ such that $f(-x)=f(x)$." Prove that it is equivalent to the Borsuk-Ulam theorem.
2.1. Below is a triangulation of the real projective plane $\mathbb{R P}_{2}$ with 10 triangles, 15 edges and 6 vertices. (Notice the identification of vertices and edges on the "outer rim".) Use this triangulation to compute all the reduced homology groups $\widetilde{H}_{i}\left(\mathbb{R P}_{2} ; k\right)$, where k is a field.
Beware: the answer is dependent on the characteristic of k.

2.2. Suppose Δ is a simplicial complex where all facets have dimension n. Assume furthermore that every $(n-1)$-dimensional face of Δ is contained in exactly two facets. Show that $\widetilde{H}_{n}\left(\Delta ; \mathbb{F}_{2}\right)$ is nontrivial, where \mathbb{F}_{2} is the field with two elements.
3.1. Suppose $G=(V, E)$ is a finite graph which has an automorphism of order two with no fixed vertices or edges. Show that the number of odd-degree vertices of
G is divisible by four. Deduce that the boundary of a 1-dimensional, antipodally symmetric element of the chain group $C_{1}\left(\diamond^{n} ; \mathbb{F}_{2}\right)$ cannot be the sum of two points. Hint: Use the handshaking lemma.
Remark: This completes our proof of Tucker's lemma.
3.2. Show the generalised version of Lyusternik-Shnirel'man. That is, suppose X_{1}, \ldots, X_{n+1} form a covering of S^{n} with each X_{i} being open or closed. Prove that for some $i \in[n+1], X_{i}$ contains a pair of antipodal points.
Hint: Induct on the number of closed sets. For the induction step, replace a closed set with a suitably constructed open one.
4.1. Show that the box complex of the complete graph K_{n} is isomorphic (as a simplicial complex) to the complex obtained from \diamond^{n-1} by removing two antipodal facets.
5.1. Prove that no graph has a contractible neighbourhood complex.
5.2. Show that the neighbourhood complex of the complete graph K_{n} is $(n-3)$ connected but not ($n-2$)-connected.
6.1 Suppose G is a connected, bipartite graph. Prove that the neighbourhood complex of G has two connected components that are homotopy equivalent to each other.
Hint: Show that $L(G)$ has two components that are interchanged by the isomorphism $C N$.

