MAI0126 TOPOLOGICAL COMBINATORICS, 2014 PROBLEM SET 1/2

UPDATED 2014-10-17; FINAL VERSION

Each problem is worth five points. You may get partial credit for non-useless, non-perfect solutions. The problems are not ordered by difficulty. Please hand in your solutions no later than **November 6**.

1.1. Consider the statement "Suppose $f : B^n \to \mathbb{R}^n$ is continuous and antipodal on the boundary ∂B^n . Then, f(x) = 0 for some $x \in B^n$." Prove that it is equivalent to the Borsuk-Ulam theorem.

1.2. Consider the statement "Suppose $f : S^n \to S^{n-1}$ is continuous. Then, there exists some $x \in S^n$ such that f(-x) = f(x)." Prove that it is equivalent to the Borsuk-Ulam theorem.

2.1. Below is a triangulation of the real projective plane \mathbb{RP}_2 with 10 triangles, 15 edges and 6 vertices. (Notice the identification of vertices and edges on the "outer rim".) Use this triangulation to compute all the reduced homology groups $\widetilde{H}_i(\mathbb{RP}_2; k)$, where k is a field.

Beware: the answer is dependent on the characteristic of k.

2.2. Suppose Δ is a simplicial complex where all facets have dimension n. Assume furthermore that every (n-1)-dimensional face of Δ is contained in exactly two facets. Show that $\widetilde{H}_n(\Delta; \mathbb{F}_2)$ is nontrivial, where \mathbb{F}_2 is the field with two elements.

3.1. Suppose G = (V, E) is a finite graph which has an automorphism of order two with no fixed vertices or edges. Show that the number of odd-degree vertices of

G is divisible by four. Deduce that the boundary of a 1-dimensional, antipodally symmetric element of the chain group $C_1(\diamond^n; \mathbb{F}_2)$ cannot be the sum of two points. *Hint: Use the handshaking lemma.*

Remark: This completes our proof of Tucker's lemma.

3.2. Show the generalised version of Lyusternik-Shnirel'man. That is, suppose X_1, \ldots, X_{n+1} form a covering of S^n with each X_i being open or closed. Prove that for some $i \in [n+1]$, X_i contains a pair of antipodal points.

Hint: Induct on the number of closed sets. For the induction step, replace a closed set with a suitably constructed open one.

4.1. Show that the box complex of the complete graph K_n is isomorphic (as a simplicial complex) to the complex obtained from \diamond^{n-1} by removing two antipodal facets.

5.1. Prove that no graph has a contractible neighbourhood complex.

5.2. Show that the neighbourhood complex of the complete graph K_n is (n-3)-connected but not (n-2)-connected.

6.1 Suppose G is a connected, bipartite graph. Prove that the neighbourhood complex of G has two connected components that are homotopy equivalent to each other.

Hint: Show that L(G) has two components that are interchanged by the isomorphism CN.