Exercises MAI0128 Introduction to Algebraic Geometry. I Planar Projective Conics and Cubics

Exercise 1 Show that the subset \mathcal{C} of \mathbb{C}^{2} consisting of the points of the form $(x, y)=\left(t^{2}, t^{3}+1\right), t \in \mathbb{C}$ is a complex algebraic curve. Give a parametrizacion of corresponding projective curve. Show that any polynomial $h(x ; y)$ vanishing at \mathcal{C} is divisible by $f(x, y)=(y-1)^{2}-x^{3}$. Calculate the singular points of it. Which curve is \mathcal{C} ?

Exercise 2 Find singular points, their multiplicity and the tangent lines to the curves at the singular points of the projective curves:

1. $x^{3} y+y^{3} z+z^{3} x=0$
2. $x^{2} y^{3}+y^{2} z^{3}+z^{2} x^{3}=0$
3. Fermat's curves $x^{n}+y^{n}-z^{n}=0, n \geq 3$.
4. Generalized Fermat's curve of degree $3 x^{3}+y^{3}+z^{3}+3 \lambda(x y z)=0, \lambda \in \mathcal{C}$

Exercise 3 Show that a singular point $p(a, b)$ of an affine curve \mathcal{C} in \mathbb{C}^{2} defined by the polynomial $f(x, y)$ is an ordinary double point iff

$$
\left(\frac{\partial^{2} f(a, b)}{\partial x \partial y}\right)^{2} \neq\left(\frac{\partial^{2} f(a, b)}{\partial x^{2}}\right)\left(\frac{\partial^{2} f(a, b)}{\partial y^{2}}\right) .
$$

Exercise 4 Give examples showing that all possible ways two projective conics intersect are realizable. In all the examples one of the intersection point is [0: $r_{1}: r_{2}$], where r_{1}, r_{2} are the two last digits in the year you were born (the coordinates are $\left[x_{0}: x_{1}: x_{2}\right]$).

Exercise 5 Consider the planes $\mathcal{H}_{1}=V\left(x_{0}-1\right)$ (inner coordinates $[(x, y)$) and $\mathcal{H}_{2}=V\left(x_{1}-1\right)$ (inner coordinates $\left.\left(z^{\prime}, y^{\prime}\right]\right)$ in \mathbb{R}^{3}. Consider the dominant map $\varphi: \mathcal{H}_{1}-\rightarrow \mathcal{H}_{2}$ given by $\varphi((x, y))=\left(z^{\prime}=1 / x, y^{\prime}=y / x\right)$. Which are the points were neither φ nor φ^{-1} are not defined, and their images in $\mathbb{P}_{\mathbb{R}}^{2}$? Give the image of the line $r_{1} x=y+r_{2}$ and the circles $\left(x_{1}\right)^{2}+(y)^{2}=r_{2},\left(x_{1}\right)^{2}+(y)^{2}=1 / r_{2}$, where r_{1}, r_{2} are as in the previous exercise.

Exercise 6 Use Bezout's theorem to show that if a projective curve \mathcal{C} in \mathbb{P}^{2} of degree d has strictly more than $d / 2$ singular points all lying in a line L then L is a component of \mathcal{C}.

Exercise 7 Consider the cubic defined by the polynomial $x_{2}^{2} x_{0}-x_{1}^{3}-r_{1} x_{1} x_{0}^{2}-$ $r_{2} x_{0}^{3}$. Calculate the inflection points. is there any inflection point O at infinity? In that case, determine the points on the curve of order 2 under the addition having O as zero. Calculate the points of order 4. r_{1}, r_{2} are as in previous exercises.

Exercise 8 Consider the nonsingular cubic \mathcal{C} in \mathbb{P}^{2} defined by $x_{1}^{3}+x_{2}^{3}+x_{0}^{3}+$ $3 r_{2}\left(x_{1} x_{2} x_{3}\right)=0$ (see exercise 1). Show that the points of inflection of \mathcal{C} are the points of intersection of \mathcal{C} with a different curve of the same form. Thus \mathcal{C} has 9 inflection points. Show that they satisfy: $x_{1}^{3}+x_{2}^{3}+x_{0}^{3}=\left(x_{1} x_{2} x_{3}\right)=0$.

Thus one can show that
$0=\left(x_{1}+x_{2}+x_{0}\right)\left(x_{1}+w x_{2}+w^{2} x_{0}\right)\left(x_{1}+w^{2} x_{2}+w x_{0}\right)$ $0=\left(x_{1}+w x_{2}+w x_{0}\right)\left(x_{1}+w^{2} x_{2}+x_{0}\right)\left(x_{1}+x_{2}+w^{2} x_{0}\right)$ $0=\left(x_{1}+w^{2} x_{2}+w^{2} x_{0}\right)\left(x_{1}+w x_{2}+x_{0}\right)\left(x_{1}+w x_{2}+w x_{0}\right)$, where $w=e^{2 \pi i / 3}$. Deduce that a line through any of two inflection points meets \mathcal{C} in a third inflection point.

Exercise 9 Consider the nonsingular cubic \mathcal{C} defined by the polynomial $x_{2}^{2} x_{0}-$ $x_{1}\left(x_{1}-x_{0}\right)\left(x_{1}-\lambda x_{0}\right), \lambda \neq 0,1$. Show that given an inflection point $O \in \mathcal{C}$, then there are exactly four tangent lines to \mathcal{C} passing through O.

Exercise 10 Consider the affine spatial curve \mathcal{C} parametrized by $(1+\cos (u), \sin (u), \sin (u / 2))$, $u \in(0,2 \pi)$. Show that the curve is the intersection of a sphere $x^{2}+y^{2}+z^{2}=4$ and a cylinder $(x-1)^{2}+y^{2}=1$. Show that the function $g:(0, \infty) \rightarrow(0,2 \pi)$ given by $g(t)=4 \operatorname{arctang}(t)$ gives a rational parametrization of \mathcal{C}. Determine such parametrization.

