Exercises MAI0128 Introduction to Algebraic Geometry. I Planar Projective Conics and Cubics

Exercise 1 Show that the subset C of \mathbb{C}^2 consisting of the points of the form $(x, y) = (t^2, t^3 + 1), t \in \mathbb{C}$ is a complex algebraic curve. Give a parametrizacion of corresponding projective curve. Show that any polynomial h(x; y) vanishing at C is divisible by $f(x, y) = (y - 1)^2 - x^3$. Calculate the singular points of it. Which curve is C?

Exercise 2 Find singular points, their multiplicity and the tangent lines to the curves at the singular points of the projective curves:

- 1. $x^3y + y^3z + z^3x = 0$
- 2. $x^2y^3 + y^2z^3 + z^2x^3 = 0$
- 3. Fermat's curves $x^n + y^n z^n = 0, n \ge 3$.
- 4. Generalized Fermat's curve of degree $3x^3 + y^3 + z^3 + 3\lambda(xyz) = 0, \lambda \in C$

Exercise 3 Show that a singular point p(a, b) of an affine curve C in \mathbb{C}^2 defined by the polynomial f(x, y) is an ordinary double point iff

 $\left(\frac{\partial^2 f(a,b)}{\partial x \partial y}\right)^2 \neq \left(\frac{\partial^2 f(a,b)}{\partial x^2}\right) \left(\frac{\partial^2 f(a,b)}{\partial y^2}\right).$

Exercise 4 Give examples showing that all possible ways two projective conics intersect are realizable. In all the examples one of the intersection point is $[0:r_1:r_2]$, where r_1, r_2 are the two last digits in the year you were born (the coordinates are $[x_0:x_1:x_2]$).

Exercise 5 Consider the planes $\mathcal{H}_1 = V(x_0 - 1)$ (inner coordinates [(x, y)) and $\mathcal{H}_2 = V(x_1 - 1)$ (inner coordinates (z', y']) in \mathbb{R}^3 . Consider the dominant map $\varphi : \mathcal{H}_1 \to \mathcal{H}_2$ given by $\varphi((x, y)) = (z' = 1/x, y' = y/x)$. Which are the points were neither φ nor φ^{-1} are not defined, and their images in $\mathbb{P}^2_{\mathbb{R}}$? Give the image of the line $r_1x = y + r_2$ and the circles $(x_1)^2 + (y)^2 = r_2, (x_1)^2 + (y)^2 = 1/r_2$, where r_1, r_2 are as in the previous exercise.

Exercise 6 Use Bezout's theorem to show that if a projective curve C in \mathbb{P}^2 of degree d has strictly more than d/2 singular points all lying in a line L then L is a component of C.

Exercise 7 Consider the cubic defined by the polynomial $x_2^2x_0 - x_1^3 - r_1x_1x_0^2 - r_2x_0^3$. Calculate the inflection points. is there any inflection point O at infinity? In that case, determine the points on the curve of order 2 under the addition having O as zero. Calculate the points of order 4. r_1, r_2 are as in previous exercises.

Exercise 8 Consider the nonsingular cubic C in \mathbb{P}^2 defined by $x_1^3 + x_2^3 + x_0^3 + x_1^3 + x_2^3 + x_2^3$ $3r_2(x_1x_2x_3) = 0$ (see exercise 1). Show that the points of inflection of $\tilde{\mathcal{C}}$ are the points of intersection of C with a different curve of the same form. Thus C has 9 inflection points. Show that they satisfy: $x_1^3 + x_2^3 + x_0^3 = (x_1x_2x_3) = 0.$

Thus one can show that

 $0 = (x_1 + x_2 + x_0)(x_1 + wx_2 + w^2x_0)(x_1 + w^2x_2 + wx_0)$ $0 = (x_1 + wx_2 + wx_0)(x_1 + w^2x_2 + x_0)(x_1 + x_2 + w^2x_0)$

 $0 = (x_1 + w^2 x_2 + w^2 x_0)(x_1 + w x_2 + x_0)(x_1 + w x_2 + w x_0),$ where $w = e^{2\pi i/3}$. Deduce that a line through any of two inflection points meets C in a third inflection point.

Exercise 9 Consider the nonsingular cubic C defined by the polynomial $x_2^2 x_0 - x_0^2 - x_0^2$ $x_1(x_1-x_0)(x_1-\lambda x_0), \lambda \neq 0, 1$. Show that given an inflection point $O \in \mathcal{C}$, then there are exactly four tangent lines to C passing through O.

Exercise 10 Consider the affine spatial curve C parametrized by $(1+\cos(u), \sin(u), \sin(u/2))$, $u \in (0, 2\pi)$. Show that the curve is the intersection of a sphere $x^2 + y^2 + z^2 = 4$ and a cylinder $(x-1)^2 + y^2 = 1$. Show that the function $g: (0,\infty) \to (0,2\pi)$ given by $g(t) = 4 \arctan(t)$ gives a rational parametrization of C. Determine such parametrization.