Exercises MAI0128 Introduction to Algebraic Geometry. 2 Affine Varieties and Their Functions.

Exercise 1 Let $J=\langle x y, x z, y z\rangle$ in $k[x, y, z]$. Find $\mathbf{V}(J)$ and $\mathbf{I}(\mathbf{V}(J))$ in k^{3}. Is $\mathbf{V}(J)$ irreducible?. Show that J cannot be generated by 2 polynomials.

Consider $J^{\prime}=\langle x y,(x-y) z\rangle$. Calculate $V\left(J^{\prime}\right)$ and $\sqrt{J^{\prime}}$.
Calculate $V\left(J^{\prime}\right)$ and $\sqrt{J^{\prime}}$ for $J^{\prime}=\left\langle x^{2}+y^{2}+z^{2}, x y+x z+y z\right\rangle$.
Exercise 2 Show that the irreducible components in an irredundant decomposition of an algebraic variety (set in Reid's notation) are unique
Exercise 3 Identify $V(J)=\mathbf{V}\left\langle x^{2}-y z, y^{4}-x z, z^{2}-y^{3} x\right\rangle$. Identify $\mathbf{V}\left\langle x^{2}-\right.$ $\left.y z, y^{4}-x z\right\rangle, \mathbf{V}\left\langle x^{2}-y z, z^{2}-y^{3} x\right\rangle$ and $\mathbf{V}\left\langle y^{4}-x z, z^{2}-y^{3} x\right\rangle$.
Exercise 4 Let $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and let $f=f_{1}^{a_{1}} f_{2}^{a_{2}} \ldots f_{r}^{a_{r}}$ be the decomposition of f into irreducible factors. Show that $\mathbf{V}(f)=\mathbf{V}\left(f_{1}\right) \cup \cdots \cup \mathbf{V}\left(f_{r}\right)$ is the decomposition of $\mathbf{V}(f)$ into irreducible components and $\mathbf{I}(\mathbf{V}(f))=\left\langle f_{1} f_{2} \ldots f_{r}\right\rangle$.

Exercise 5 1. Show that the intersection of any collection of prime ideals is radical.
2. Show that an irredundant intersection of at least two prime ideals is never prime.

Exercise $6 \varphi: \mathbf{A}^{1} \rightarrow \mathbf{A}^{3}$ is the polynomial map given by $t \rightarrow\left(t, t^{2}, t^{3}\right)$. Show that the image of φ is an algebraic variety $\mathcal{C} \subset \mathbf{A}^{3}$ and that $\varphi: \mathbf{A}^{1} \rightarrow \mathcal{C}$ is an isomorphism.

Exercise 7 Let $\mathcal{C}=\mathbf{V}\left\langle y^{2}-x^{3}\right\rangle \subset \mathbf{A}^{2}$. Show

1. that the parametrization $f: \mathbf{A}^{1} \rightarrow \mathcal{C}$ given by $t \rightarrow\left(t^{2}, t^{3}\right)$ is a polynomial map;
2. that f has a rational inverse $g: \mathcal{C}-\rightarrow \mathbf{A}^{1}$ given by $(x, y) \rightarrow y / x$;
3. finally f and g are inverse isomorphisms between $\mathbf{A}^{1} \backslash\{0\} \cong \mathcal{C} \backslash\{(0,0)\}$.

Exercise 8 Let $\mathcal{C}=\mathbf{V}\left\langle y^{3}-x^{4}-x^{3}\right\rangle \subset \mathbf{A}^{2}$. Show that $(x, y) \rightarrow y / x$ defines a rational $\operatorname{map} \phi: \mathcal{C}-\rightarrow \mathbf{A}^{1}$, and its inverse is a polynomial map $f: \mathbf{A}^{1} \rightarrow \mathcal{C}$ parametrising \mathcal{C}. Prove that f restricts to an isomorphism $\mathbf{A}^{1} \backslash\left\{t_{1}, t_{2}, t_{3}\right\} \cong$ $\mathcal{C} \backslash\{(0,0)\}$.

Exercise 9 Let V be an irreducible variety and let ϕ and φ be functions in $k[V]$ represented by polynomials f and g. Suppose that $\phi \dot{\varphi} \equiv 0$ in $k[V]$, but neither ϕ nor φ is the zero function on V. Show that $V=(V \cap \mathbf{V}\langle f\rangle) \cup(V \cap \mathbf{V}\langle g\rangle)$.

Exercise 10 Let $f: \mathbf{A}^{1} \rightarrow \mathbf{A}^{2}$ be given by $t \rightarrow(t, 0)$, and let $g: \mathbf{A}^{2}-\rightarrow \mathbf{A}^{1}$ be the rational map given by $(x, y) \rightarrow x / y$. Show that the composite $g \cdot f$ is not defined anywhere. Determine what is the largest subset of the function field $k\left(\mathbf{A}^{1}\right)$ on which $g^{*}: k\left[\mathbf{A}^{1}\right] \rightarrow k\left(\mathbf{A}^{2}\right)$ is defined.

