Exercises MAI0128 Introduction to Algebraic Geometry. **2** Affine Varieties and Their Functions.

Exercise 1 Let $J = \langle xy, xz, yz \rangle$ in k[x, y, z]. Find $\mathbf{V}(J)$ and $\mathbf{I}(\mathbf{V}(J))$ in k^3 . Is $\mathbf{V}(J)$ irreducible?. Show that J cannot be generated by 2 polynomials.

Consider $J' = \langle xy, (x - y)z \rangle$. Calculate V(J') and $\sqrt{J'}$.

Calculate V(J') and $\sqrt{J'}$ for $J' = \langle x^2 + y^2 + z^2, xy + xz + yz \rangle$.

Exercise 2 Show that the irreducible components in an irredundant decomposition of an algebraic variety (set in Reid's notation) are unique

Exercise 3 Identify $V(J) = \mathbf{V}\langle x^2 - yz, y^4 - xz, z^2 - y^3x \rangle$. Identify $\mathbf{V}\langle x^2 - yz, y^4 - xz \rangle$, $\mathbf{V}\langle x^2 - yz, z^2 - y^3x \rangle$ and $\mathbf{V}\langle y^4 - xz, z^2 - y^3x \rangle$.

Exercise 4 Let $f \in \mathbb{C}[x_1, \ldots, x_n]$ and let $f = f_1^{a_1} f_2^{a_2} \ldots f_r^{a_r}$ be the decomposition of f into irreducible factors. Show that $\mathbf{V}(f) = \mathbf{V}(f_1) \cup \cdots \cup \mathbf{V}(f_r)$ is the decomposition of $\mathbf{V}(f)$ into irreducible components and $\mathbf{I}(\mathbf{V}(f)) = \langle f_1 f_2 \ldots f_r \rangle$.

- **Exercise 5** 1. Show that the intersection of any collection of prime ideals is radical.
 - 2. Show that an irredundant intersection of at least two prime ideals is never prime.

Exercise 6 $\varphi : \mathbf{A}^1 \to \mathbf{A}^3$ is the polynomial map given by $t \to (t, t^2, t^3)$. Show that the image of φ is an algebraic variety $\mathcal{C} \subset \mathbf{A}^3$ and that $\varphi : \mathbf{A}^1 \to \mathcal{C}$ is an isomorphism.

Exercise 7 Let $\mathcal{C} = \mathbf{V} \langle y^2 - x^3 \rangle \subset \mathbf{A}^2$. Show

- 1. that the parametrization $f : \mathbf{A}^1 \to \mathcal{C}$ given by $t \to (t^2, t^3)$ is a polynomial map;
- 2. that f has a rational inverse $g: \mathcal{C} \to \mathbf{A}^1$ given by $(x, y) \to y/x$;
- 3. finally f and g are inverse isomorphisms between $\mathbf{A}^1 \setminus \{0\} \cong \mathcal{C} \setminus \{(0,0)\}$.

Exercise 8 Let $C = \mathbf{V}\langle y^3 - x^4 - x^3 \rangle \subset \mathbf{A}^2$. Show that $(x, y) \to y/x$ defines a rational map $\phi : C \to \mathbf{A}^1$, and its inverse is a polynomial map $f : \mathbf{A}^1 \to C$ parametrising C. Prove that f restricts to an isomorphism $\mathbf{A}^1 \setminus \{t_1, t_2, t_3\} \cong C \setminus \{(0, 0)\}.$

Exercise 9 Let V be an irreducible variety and let ϕ and φ be functions in k[V] represented by polynomials f and g. Suppose that $\phi \dot{\varphi} \equiv 0$ in k[V], but neither ϕ nor φ is the zero function on V. Show that $V = (V \cap \mathbf{V}\langle f \rangle) \cup (V \cap \mathbf{V}\langle g \rangle)$.

Exercise 10 Let $f : \mathbf{A}^1 \to \mathbf{A}^2$ be given by $t \to (t, 0)$, and let $g : \mathbf{A}^2 \to \mathbf{A}^1$ be the rational map given by $(x, y) \to x/y$. Show that the composite $g \cdot f$ is not defined anywhere. Determine what is the largest subset of the function field $k(\mathbf{A}^1)$ on which $g^* : k[\mathbf{A}^1] \to k(\mathbf{A}^2)$ is defined.