Exercises MAI0128 Introduction to Algebraic Geometry. **3** Projective Varieties. Nonsingularity and Dimension

Exercise 1 Which of the following expressions define rational maps $\varphi : \mathbb{P}^n \to \mathbb{P}^m$ between projective spaces of the appropriate dimension (n, m = 1 or 2)?. In each case determine dom φ , say if φ is birational and in that case describe the inverse map:

1. $(x, y, z) \to (x, y)$ 2. $(x, y, z) \to (1/x, 1/y, 1/z)$ 3. $(x, y, z) \to ((x^3 + y^3)/z^3, y^2/z^2, 1)$ 4. $(x, y, z) \to (x^2 + y^2, y^2, y^2)$

Exercise 2 Let $C \subset \mathbb{P}^3$ be an irreducible curve defined by $C = Q_1 \cap Q_2$, where $Q_1 = V(wx = q_1), Q_2 = V(wy = q_2)$, with q_1, q_2 quadratic forms in x, y, z. Show that the projection $\pi : \mathbb{P}^3 \to \mathbb{P}^2$ defined by $(w, x, y, z, w) \to (x, y, z)$ restricts to an isomorphism of C with the plane curve given defined by the quadratic form $xq_2 = yq_1$.

Exercise 3 Prove that any irreducible quadric $\mathcal{Q} \subset \mathbb{P}^{n+1}$ is rational; i.e. show that if $p \in \mathcal{Q}$ is a non-singular point, then the linear projection of \mathbb{P}^{n+1} to \mathbb{P}^n induces a birational map $\mathbf{Q} \to \mathbb{P}^n$.

Exercise 4 (Veronese surface). consider the embedding $\varphi : \mathbb{P}^2 \to \mathbb{P}^5$ given by $(x, y, z) \to (x^2, xy, xz, y^2, yz, z^2)$. Determine the forms defining the image $\mathcal{S} = \varphi(\mathbb{P}^2)$, and show that φ is a isomorphism. Prove that the lines of \mathbb{P}^2 are mapped to conics in \mathbb{P}^5 . For any line $l \subset \mathbb{P}^2$, consider the projective plane $\pi(l) \subset \mathbb{P}^5$ spanned by the conic $\varphi(l)$. Prove that the union of $\pi(l)$; l line in \mathbb{P}^2 is a cubic hypersurface in \mathbb{P}^5 .

Exercise 5 The Cartesian product of two affine spaces k^n and k^m is simply another affine space $k^n \times k^m = k^{n+m}$. By considering the corresponding affine space k^n, k^m, k^{n+m} as the \mathcal{U}_0 open subset of $\mathbb{P}^n, \mathbb{P}^m, \mathbb{P}^{n+m}$ respectively, show that $\mathbb{P}^{n+m} \neq \mathbb{P}^n \times \mathbb{P}^m$.

Exercise 6 The Segre surface of $\mathbb{P}^1 \times \mathbb{P}^1$. Using the embedding $\varphi : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$ given by $((x_0, x_1), (y_0, y_1)) \to (x_0y_0, x_0y_1, x_1y_0, x_1y_1)$, show that $\varphi : \mathbb{P}^1 \times \mathbb{P}^1$ is isomorphic to $\mathcal{S} = V(X_0X_3 - X_1X_2) \subset \mathbb{P}^3$.

Find equations for the Segre variety of $\mathbb{P}^2 \times \mathbb{P}^1$ in \mathbb{P}^5 . Which is the intersection of the Segre variety and the Veronese surface in \mathbb{P}^5 ?

Exercise 7 Find the singular points of the surfaces in k^n (affine space of dim n) given by

1.
$$xy^2 = z^2$$
,

2. $x^2 + y^2 = z^2;$ 3. $xy + x^3 + z^3.$

Exercise 8 Consider the complex numbers C. Show that the projective hypersurface $V_d = V(x_0^d + x_1^d + \cdots + x_n^d) \subset \mathbb{P}^n$ is nonsingular.

Exercise 9 Prove that the intersection of an affine hypersurface $V \subset k^n$, not an hyperplane with the tangent hyperplane T_pV is singular at p.

Exercise 10 Show how to resolve the following curve singularities by making one or more blow-ups:

y³ - x⁴ and y³ - x⁵
y² - x⁵, in general y² - x²ⁿ⁺¹
(y² - x²)(y² - x⁵) - x⁸