Suggested topics for presentations, Optimal Transport

Tomas Sjödin

October 3, 2017

Contents

1	A game-theoretic approach to duality	1
2	The case $c(x,y) = x - y $ in subsets of \mathbb{R}^n	2
3	Euclidean isoperimetric inequality/Sobolev inequality	2
4	Brenier's polar factorization theorem	2
5	Wasserstein distance	2
6	Finite spaces and the simplex method	3

1 A game-theoretic approach to duality

Present the proof of the following minimax theorem of Sion, which itself is a generalization of a theorem of Von Neumann in game theory in the Euclidean setting. (Alternatively state it as below but give the von Neumann proof only for compact subsets in \mathbb{R}^n assuming the Brouwer fixed point theorem is known). Then proceed to prove the fundamental Kantorovich-Koopmans duality theorem below.

Theorem 1.1 (Sion). Let U be a compact convex subset of a topological vector space, and let V be a convex subset of a topological vector space. Let $f: U \times V \to \mathbb{R}$ satisfy

(i) $f(x, \cdot)$ is continuous and concave on V for each $x \in U$,

(ii) $f(\cdot, y)$ is continuous and convex on U for each $y \in V$.

Then

$$\min_{x \in U} \sup_{y \in V} f(x, y) = \sup_{y \in V} \min_{x \in U} f(x, y).$$

Theorem 1.2 (Kantorovich-Koopmans duality).

$$W_c(\mu,\eta) = \sup\left\{-\int ud\mu - \int vd\eta : -(u,v) \in \operatorname{Lip}_c\right\}.$$
(1)

Suggested source: The course lecture notes section 4.1, Section 2.1 in [10].

2 The case c(x, y) = ||x - y|| in subsets of \mathbb{R}^n

This is a demanding topic/presentation.

As was mentioned during the course the following is proved in [11] and [6], using a limiting argument as $p \searrow 1$.

Theorem 2.1. There exists an optimal map G for the Monge minimization problem.

This is actually just part of Theorem 3.1 [11]. The topic for this presentation is to introduce the concepts (mass transfer sets/rays) and explain what their Theorem 3.1 says in detail (proving the theorem is not reasonable).

3 Euclidean isoperimetric inequality/Sobolev inequality

Present a proof of the isoperimetric and the Sobolev inequality. (It is enough to do one in detail and then explain how the other can be proved by similar methods).

Theorem 3.1 (Isoperimetric inequality). If $\Omega \subset \mathbb{R}^n$ is a bounded subset with smooth boundary, then

$$n\lambda(B(0,1))^{1/n}\lambda(\Omega)^{(n-1)/n} \le \sigma(\partial\Omega),$$

where σ denotes the surface area measure on $\partial \Omega$.

Theorem 3.2 (Sobolev Inequality).

$$\|f\|_{L^{p^*}(\mathbb{R}^n)} \le C(n,p) \|\nabla f\|_{L^p(\mathbb{R}^n)} \quad \forall f \in C^{\infty}_c(\mathbb{R}^n),$$

where $p^* = np/(n-p)$.

Suggested source: Section 4.2 and 4.3 of [2].

4 Brenier's polar factorization theorem

Theorem 4.1 (Brenier's polar factorization theorem). If $r : X \to X$ is a vector field such that $\lambda(r^{-1}(A)) = 0$ whenever $\lambda(A) = 0$, then

 $r = Dv \circ \phi,$

where v is convex and ϕ is measure preserving.

Also compare this to the Helmholtz decomposition. Suggested source: Proposition 1.28, Remark 1.29 of [2].

5 Wasserstein distance

Let X = Y be a compact metric space with $d_X = d_Y = d$ and let $c(x, y) = d(x, y)^p/p$ Prove that

$$d_p(\mu,\eta) = W_c(\mu,\eta)^{1/p}$$

is a metric on the space $\mathcal{P}(X)$ of all (Borel) probability measures on X. This distance is often called the Wasserstein *p*-distance.

If time permits one can also consider mentioning some properties that is inherited by $(\mathcal{P}(X), d_p)$ from X, like geodesic properties etc. in particular in the case p = 2.

Suggested source: Section 2.1 (-2.3) of [2].

6 Finite spaces and the simplex method

A typical linear programming problem can be given as follows. Let C be a (real) row matrix of length N, B a column matrix of length N and A an $M \times N$ -matrix. Minimize $C\Gamma$ subject to the constraints $A\Gamma = B$ and $\Gamma \ge 0$ (where the latter means that all entries in the column matrix Γ are non-negative).

Explain first how the problem in Example ?? can be put on this form. Present how such a problem can be solved in a mechanical way using e.g. the simplex method. Furthermore do an example e.g. with the following numbers:

$$\mu = \delta_{x_1} + 4\delta_{x_2}, \quad \eta = 2\delta_{y_1} + 3\delta_{y_2},$$

and

$$c(x_1, y_1) = 1$$
, $c(x_1, y_2) = 2$, $c(x_2, y_1) = 3$, $c(x_2, y_2) = 3$.

Suggested source: Appendix to [7] and e.g. the Wikipedia entry on the simplex method.

References

- L. Ambrosio, "Lecture notes on optimal transport problems", Euro Summer School (2000), 1–56
- [2] L. Ambrosio and N. Gigli, "A user's guide to optimal transport", CIME summer school lecture notes (2009), 1–128
- [3] Y. Brenier, "Décomposition polaire et réarrangement monotone des champs de vecteurs", C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 805–808.
- [4] Y. Brenier, "Polar factorization and monotone rearrangement of vector-valued functions", Comm. Pure Appl. Math. 44 (1991), 375–417.
- [5] L. A. Caffarelli, "The regularity of mappings with a convex potential", J. Amer. Math. Soc. 5 (1992), 99–104.
- [6] L.A. Caffarelli, M. Feldman and R.J. McCann, "Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs", J. Amer. Math. Soc. 15 (2002), 1–26.
- [7] L.C. Evans, "Partial Differential Equations and Monge-Kantorovich Mass Transfer", *Current developments in mathematics* (1997, 2001), 1–59
- [8] T.S. Ferguson, "Linear Programming", Lecture Notes 1–66
- [9] H. Komiya, "Elementary proof for Sion's minimax theorem", Kodai Math. J. 11 (1988) 5–7
- [10] R.J. McCann and N. Guillen, "Five Lectures on Optimal Transportation: Geometry, Regularity and Applications", *Lecture Notes* (2010) 1–32
- [11] N.S. Trudinger and X.J. Wang, "On the Monge mass transfer problem", Calc. Var. 13 (2001) 19–31.

- [12] C. Villani, Topics in Optimal Transportation, AMS, 2003.
- [13] C. Villani, Optimal Transport: Old and New, Springer, 2009.