MAI0142 Hand in Problems – 12

- 1. Let \boldsymbol{x}_{ij} be independent and identically distributed vectors with *p*-variate normal distribution $N_p(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$, where i = 1, 2 and $j = 1, ..., N_i$. For simplicity let $\boldsymbol{\Sigma}_1 = \boldsymbol{\Sigma}_2 = \boldsymbol{I}_p$.
 - (a) Simulate the ASL for the tests Hotelling T^2 , Dempster (1958), Bai and Sarandasa (1996), Srivastava (2007) and Srivastava and Du (2008), discussed in Lecture 12 for the combinations $N_1 = N_2 = \{15, 30\}$ and $p = \{5, 10, 50, 100, 200\}$ (when possible). Give a table. Conclusion?
 - (b) Simulate also the power for the same tests and p and N_1, N_2 . Choose an alternative, i.e., $\mu_1 \neq \mu_2$, that give resonable power. Give a table. Conclusion?
- 2. Consider the covariance matrices for the three different estimators for the parameter matrix B in the GCM discussed in Lecture 12, i.e.,

$$\operatorname{cov}\left(\widehat{\boldsymbol{B}}_{MLE}\right) = \frac{n-1}{n-1-(p-q)} (\boldsymbol{C}\boldsymbol{C}')^{-1} \otimes (\boldsymbol{A}'\boldsymbol{\Sigma}^{-1}\boldsymbol{A})^{-1},$$
$$\operatorname{cov}\left(\widehat{\boldsymbol{B}}\right) = (\boldsymbol{C}\boldsymbol{C}')^{-1} \otimes (\boldsymbol{A}'\boldsymbol{A})^{-1}\boldsymbol{A}'\boldsymbol{\Sigma}\boldsymbol{A}(\boldsymbol{A}'\boldsymbol{A})^{-1}.$$
$$\operatorname{cov}\left(\widehat{\boldsymbol{B}}_{AL}\right) \approx \frac{(p-q-1)(p-1)}{(n-q-1)(p-n+q-1)} (\boldsymbol{C}\boldsymbol{C}')^{-1} \otimes (\boldsymbol{A}'\boldsymbol{\Sigma}^{-1}\boldsymbol{A})^{-1}$$

Compare these covariance matrices for the cases

- (i) $n \gg p$,
- (ii) $n \gtrsim p$,
- (iii) n = p,
- (iv) $n \leq p$,
- (v) $n \ll p$.

How about the size of q? Also discuss the role of the matrices $(\mathbf{A}' \mathbf{\Sigma}^{-1} \mathbf{A})^{-1}$ versus $(\mathbf{A}' \mathbf{A})^{-1} \mathbf{A}' \mathbf{\Sigma} \mathbf{A} (\mathbf{A}' \mathbf{A})^{-1}$.