MAI0142
 Hand in Problems - 12

1. Let $\boldsymbol{x}_{i j}$ be independent and identically distributed vectors with p-variate normal distribution $N_{p}\left(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right)$, where $i=1,2$ and $j=1, \ldots, N_{i}$. For simplicity let $\boldsymbol{\Sigma}_{1}=\boldsymbol{\Sigma}_{2}=\boldsymbol{I}_{p}$.
(a) Simulate the ASL for the tests Hotelling T^{2}, Dempster (1958), Bai and Sarandasa (1996), Srivastava (2007) and Srivastava and Du (2008), discussed in Lecture 12 for the combinations $N_{1}=N_{2}=\{15,30\}$ and $p=\{5,10,50,100,200\}$ (when possible). Give a table. Conclusion?
(b) Simulate also the power for the same tests and p and N_{1}, N_{2}. Choose an alternative, i.e., $\boldsymbol{\mu}_{1} \neq \boldsymbol{\mu}_{2}$, that give resonable power. Give a table. Conclusion?
2. Consider the covariance matrices for the three different estimators for the parameter matrix \boldsymbol{B} in the GCM discussed in Lecture 12, i.e.,

$$
\begin{aligned}
\operatorname{cov}\left(\widehat{\boldsymbol{B}}_{M L E}\right) & =\frac{n-1}{n-1-(p-q)}\left(\boldsymbol{C} \boldsymbol{C}^{\prime}\right)^{-1} \otimes\left(\boldsymbol{A}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{A}\right)^{-1} \\
\operatorname{cov}(\widehat{\boldsymbol{B}}) & =\left(\boldsymbol{C} \boldsymbol{C}^{\prime}\right)^{-1} \otimes\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\prime} \boldsymbol{\Sigma} \boldsymbol{A}\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)^{-1} \\
\operatorname{cov}\left(\widehat{\boldsymbol{B}}_{A L}\right) & \approx \frac{(p-q-1)(p-1)}{(n-q-1)(p-n+q-1)}\left(\boldsymbol{C} \boldsymbol{C}^{\prime}\right)^{-1} \otimes\left(\boldsymbol{A}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{A}\right)^{-1}
\end{aligned}
$$

Compare these covariance matrices for the cases
(i) $n \gg p$,
(ii) $n \gtrsim p$,
(iii) $n=p$,
(iv) $n \lesssim p$,
(v) $n \ll p$.

How about the size of q ? Also discuss the role of the matrices $\left(\boldsymbol{A}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{A}\right)^{-1}$ versus $\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\prime} \boldsymbol{\Sigma} \boldsymbol{A}\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)^{-1}$.

